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1. Week1

Normality, Quotient Groups and
Canonical Projection

Normality, Quotient Groups and Canonical Projection

1.1. Definitions. :
I H  G: H is a subgroup of G.
I H P G: H is a normal subgroup of G. (When ⇠l,H and ⇠r,H are the
same relation: if 8g 2 G, 8h 2 H, ghg

�1 2 H

I Coset multiplication (when H P G):(g1H)(g2H) = (g1g2)H.
I Canonical projection (from G onto G/H): Suppose H E G.
Define ⇡ : G ! G/H as follows: ⇡(a) = aH. Then ⇡ is an epimor-
phism.

1.2. Theorems. :
F Theorem characterizing when coset multiplication is well-
defined: If H is a normal subgroup of G, Then coset multiplication is
well-defined.
F Theorem concerning the properties of coset multiplication
(”When H E G, coset multiplication turns G/H into a...”): If
H E G, then G/H is a group under coset multiplication.
F Theorem describing the kernel of the canonical projection:
Let ⇡ : G! G/H be the canonical projection. Then ker(⇡) = H.
F Fundamental Theorem of Homomorphisms: Suppose � : G!
H is a homomorphism. Let � : G ! G/Ker(�) be the canonical pro-
jection. Then there exists a unique monomorphism b� : G/Ker(�)! H

such that b� � ⇡ = �
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1.3. Notes from last semester (Cosets). G: a group, a, b 2 G,H 
G.

a ⇠l,H b () b
�1
a 2 H

a ⇠r,H b () ba
�1 2 H

aH = [a]⇠r,H
= {ah 2 H, h 2 H} (left coset)

Ha = [a]⇠r,H
= {ha 2 H, h 2 H} (right coset)

(equivalence relations)

1.4. Equality Test.

aH = bH () b
�1
a 2 H

1.5. Subgroup and Normal Subgroup.

1.5.1. Subgroup.

Definition 1. Subgroup
Suppose (G,4) is a group, H  G. H is a subgroup of G if

(1) e 2 H

(2) if h1, h2 2 H, then h14h2 2 H

(3) if h 2 H, then h
0 2 H

1.5.2. Normal Subgroup.

Definition 2. Normal Subgroup

If 8g 2 G, 8h 2 H, ghg
�1 2 H, then ⇠l,H are the same relation. If this

happens, H is a normal subgroup of G, H P G.

Normality is rare. But if G is abelian, then normality is automatic.

1.5.3. Normality. Normality If ⇠l,H and ⇠r,H are the same relation.

[g]⇠l,H
= [g]⇠r,H

gH = Hg

ghh
0
g, (h, h0 2 H)

ghg
�1 = h

ghg
�1 2 H

gh = h
0
g(normality)
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1.6. Kernels are always normal.

G
��! H

�(g1g2) = �(g1)�(g2) (Homomorphism)

�[G] = im�

�
�1[{eH}] = ker�

k 2 ker�

�(gkg�1) = �(g)�(k)�(g�1)

�(k) = eH

�(gkg�1) = eH 2 ker�

1.7. Quotient Groups.

Definition 3. Quotient Groups

Suppose H  G. Recall that G/H is the collection of left cosets (all
aH).

G/H = {gH|g 2 G}
G\H = {Hg|g 2 G}

These are well-defined sets of G.

If G is abelian. then normality is automatic. (aH = Ha).
A set id a well-defined collection objects called elements or members
of the set. Well-defined means that any given object must either be an
element of the set, or not be an element of the set.

1.8. Coset Multiplication.

Definition 4. Coset Multiplication

(g1H)(g2H) = (g1g2)H

Theorem 1. Charaterizing when coset multiplication is well-

defined

If H is a normal subgroup of G, then coset multiplication is well-
defined.

Proof. Suppose a1H = b1H and a2H = b2H. Prove that (a1a2)H =
(b1b2)H.
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Since a1H = b1H, b�1
1 a1 2 H say b

�1
1 a1 = h1. Similarly, put b�1

2 a2 =
h2 2 H.

a1 = b1h1

a2 = b2h2

a1a2 = b1h1b2h2

= b1b2h
0
1h2 (normal)

(b1b2)
�1
a1a2 = h

0
1h2 2 H

(a1a2)H = (b1b2)H

⇤
Theorem 2. Concerning property of coset multiplication if
H P G, then G/H is a group under coset multiplication.

Proof. Associative:

((aH)(bH))(cH) = ((ab)H)(cH)

= ((ab)c)H

= (a(bc))H

= (aH)((bc)H)

= (aH)((bH)(cH))

Identity:
eH should be an identity, e is the identity of G.

(aH)(eH) = (ae)H

= aH

(eH)(aH) = (ea)H = aH

Inversion:
The inverse of aH is a��1

H

(aH)(a�1
H) = (aa�1)H

= eH

(a�1
H)(aH) = (a�1

a)H

= eH

⇤
1.9. Canonical Projection.

Definition 5. Canonical Projection Suppose H P G. Define ⇡ :
G! G/H as follows: ⇡(a) = aH. Then ⇡ is an epimorphism.
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Note: epimorphism: homomorphism (�(g1g2) = �(g1)�(g2)) and � is
surjective.

⇡(ab) = (ab)H

⇡(a)⇡(b) = (aH)(bH)

These are equal by definition.
Surjective: any element of G/Hhas the form aH. Then ⇡(a) = aH

Theorem 3. Describing Kernel of Canonical Projection

Let ⇡ : G! G/H be the canonical projection, then ker(⇡) = H.

Proof.

ker(⇡) = {a 2 G|⇡(a) = eH}
= {a 2 G|aH = eH}
= {a 2 G|e�1

a 2 H}
= {a 2 G|a 2 H}
= H

e

H

eH

⇡

G G/H

⇤
Kernels are normal, this shows that coset multiplication cannot be

well-defined if H is not normal.

Example 1. Quotient Groups

(1) Quotient Groups

G = S3, H = A3

H = {◆, (123), (132)}
◆H = {◆, (123), (132)}

(12)H = {(12), (23), (13)}
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◆

(123) (132)

(12)

(13) (23)
◆A3

(12)A3

S3(G)
S3/A3(G/H)

◆A3 (12)A3

◆A3 ◆A3 (12)A3

(12)A3 (12)A3 ◆A3

(2) Bad Example of Quotient Group

G = S3, H = h(12)i

◆H = {◆, (12)}
(13)H = {(13), (123)}
(132)H = {(132), (23)}
((13)H) = ((123)H)

((13)H)((132)H) = (132)H

((123)H)((132)H) = ◆H

((13)H)((132)H) 6= ((123)H)((132)H)

◆H (13)H (132)H
◆H ◆H (13)H (132)H
(13)H (13)H ◆H (132)H
(132)H

(3) Order of Quotient Group

order of 5 + h4i in Z/ h4i
0 + h4i = {0, 4, 8}
1 + h4i = {1, 5, 9}
2 + h4i = {2, 6, 10}
3 + h4i = {3, 7, 11}
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0 + h4i 1 + h4i 2 + h4i 3 + h4i
0 + h4i 0 1 2 3
1 + h4i 1 2 3 0
2 + h4i 2 3 0 1
3 + h4i 3 0 1 2

5 + h4i = 1 + h4i
(5 + h4i)4 = 0 + h4i

Order is 4.

1.10. How to test for normality.

(1) Definition: H P G i↵ 8g 2 G, 8h 2 H, ghg
�1 2 H.

If G is finite, this is computable using a nested loop:
for(g : g 2 G){
for(h : h 2 H){

(2) Abelian G ! always normal.
(3) H is a kernel of some homomorphisms.
(4) [G : H] = 2.

1.11. Fundamental Theorem of Homomorphisms.

Theorem 4. Fundamental Theorem of Homomorphisms

Suppose � : G! H is a homomorphism.
Let ⇡ : G ! G/Ker� be the canonical projection. Then there exists a
unique monomorphism �̂ : G/Ker�! H, such that �̂ � ⇡ = �.

G H

G/ker�

�

⇡ �̂
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Proof. (1) (Uniqueness) Suppose that a �̂ exists.

�̂2(cker�) = �̂2(⇡(c))

= (�̂ � ⇡)(c)
= �(c)

(2) (Existence) ”Define” �̂(cker�) = �(c).
But the user get to choose c, so we need to be sure that the
RHS is independent of this choice.
Suppose c1ker� = c2ker�,
Then c

�1
2 c1 2 ker�, say c

�1
2 c1 = k.

c1 = c2k

�(c1) = �(c2k)

= �(c2)�(k)

= �(c2)eH

= �(c2)

so: �̂ = �(c) is a well-defined formula.
�̂ preserves operations:

�̂(cker�)(dker�) = �((cd)ker�)

= �(cd)

OTOH

�(cker�)�(dker�) = �(c)�(d) homomorphism

Suppose

�̂(cker�) = �̂(dker�)

�(c) = �(d)

eH = (�(c))�1
�(d)

so

�(c�1
d) = eH

c
�1
d 2 ker�

dker� = cker�

⇤
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2. Week2

2.1. Definitions. I Ring:A ring is a triple (R,+, ·) where R is a set,
+ and · are binary operations on R.
(1) (R,+) is an abelian group.
(2) (R, ·) is a semigroup (· is associative).
(3) We have the left and right distributive laws:
(a) a · (b+ c) = (a · b) + (a · c) left distributive law.
(b) (a+ b) · c = (a · c) + (b · c) right distributive law.

IIdentity(of additive and multiplicative operations): (1)The iden-
tity element of (R,+) is called the zero element of R, denote 0R.
(2)(R, ·) may or may not have an identity element.

I Unital (ring): (R, ·) may or may not have an identity element.
If (R, ·) does have an identity, we say that R is a unital ring and we
refer to the multiplicative identity as the unity element of R, denoted
1R.

IInverse(of additive and multiplicative operations): (1) If a 2 R,
the additive inverse is called the opposite of a, denoted �a.
(2) If R is unital, then a may or may not have a multiplicative inverse.
If it does, then a is a unit and its multiplicative inverse is denoted a�1.

ICommutative (ring): (R, ·) may or may not be commutative. If
it is, we say that R is a commutative ring.
� Example: (Mn(R),+n, ·n) is a ring;
0Mn(R) = zero matrix ;
1Mn(R) = identity matrix;
not commutative;
Units of Mn(R): invertible matrices.

2.2. Theorems. F Rules of sign for rings (this appears in the text
as Theorem 18.8): Let R be any ring. Then:(1)0R · a = 0R = a · 0R; (2)
(�a)b = a(�b) = �(ab); (3)(�a)(�b) = ab.

2.3. Ring.

Definition 6. A ring is a triple (R,+, ·) where R is a set, + and · are
binary operations on R.
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Definition 7 (Rings). Properties.

(1) (R,+) is an abelian group.
(2) (R, ·) is a semigroup (· is associative).
(3) We have the left and right distributive laws:

(a) a · (b+ c) = (a · b) + (a · c) left distributive law.
(b) (a+ b) · c = (a · c) + (b · c) right distributive law.

Definition 8 (Identity). Identity of additive and multiplicative opera-
tions.

(1) The identity element of (R,+) is called the zero element of
R, denote 0R.

(2) (R, ·) may or may not have an identity element. If (R, ·) does
have an identity, we say that R is a unital ring and we refer
to the multiplicative identity as the unity element of R, de-
noted 1R.

Definition 9 (Inverse). Inverse of additive and multiplicative opera-
tions.

(1) If a 2 R, the additive inverse is called the opposite of a,
denoted �a.

(2) If R is unital, then a may or may not have a multiplicative in-
verse. If it does, then a is a unit and its multiplicative inverse
is denoted a�1.

Definition 10 (commutative). Finally, (R, ·) may or may not be com-
mutative. If it is, we say that R is a commutative ring.

Example 2. (Z,+, ·) is a ring.
0Z = 0
�(5) = (�5)
Is unital: 1Z = 1
Is commutative.
Units: 1,�1.
Example 3. (2Z,+, ·) is a non-unital ring.
02Z = 0
Is commutative.

Example 4. (Zn,+n, ·n) is a ring.
0Zn

= [0]⌘n
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1Zn
= [1]⌘n

Is commutative.
Units of Zn: [a] is a unit i↵ gcd(a, n) = 1.

Example 5. (Fun(R,R),+, ·) is a ring.
(f + g)(x) = f(x) + g(x) (”pointwise addition”)
(fg)(x) = f(x)g(x) (”pointwise multipliaction”)
These operations turn Fun(R,R) into a ring.
0Fun(R,R) = ”zero function: f(x) = 0
1Fun(R,R) = ”one function: f(x) = 1
F Is commutative?

Example 6. (Mn(R),+n, ·n) is a ring.
0Mn(R) = zero matrix
1Mn(R) = identity matrix
not commutative.
Units of Mn(R): invertible matrices.

Theorem 5. Let R be any ring. Then:

(1) 0R · a = 0R = a · 0R
(2) (�a)b = a(�b) = �(ab)
(3) (�a)(�b) = ab

Proof. (1)

0R + 0R = 0R

(0R + 0R)a = 0Ra

0Ra+ 0Ra = 0Ra

(0Ra+ 0Ra)� 0Ra = 0Ra� 0Ra

0Ra+ (0Ra� 0Ra) = 0R
0Ra+ 0R = 0R

0Ra = 0R

Other half is similar.
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(2)

(�a)b+ ab = (�a+ a)b

= 0b

= 0

(�a)b = �ab
(3)

(�a)(�b) = �(a(�b))
= �(�(ab))
= ab

⇤
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2.4. Problems.

Problem 1. ”(Direct products of groups)” Let G and H be groups.
Define a binary operation on the Cartesian product set G ⇥ H by the
formula (g1, h1)(g2, h2) = (g1g2, h1h2). Show that
(i) this operation is associative;
(ii) the ordered pair (eG, eH) is an identity element for this operation;
and
(iii) any ordered pair (g, h) has inverse (g�1

, h
�1). Thus, with this

operation, the Cartesian product G⇥H becomes a group, which we call
the ”direct product” of the groups G and H.

Proof. (1) Associative

[(g1, h1)(g2, h2)](g3, h3) = (g1g2, h1h2)(g3, h3)

= ((g1g2)g3, (h1h2)h3)

= (g1(g2g3), h1(h2h3))(G,H are groups)

= (g1, h1)[(g2, h2)(g3, h3)]

(2) Identity

(g, h)(eG, eH) = (geG, heH)

= (g, h)

(eG, eH)(g, h) = (eGg, eHh)

= (g, h)

(3) Inverse

(g, h)(g�1
, h

�1) = (gg�1
, hh

�1)

= (eG, eH)

(g�1
, h

�1)(g, h) = (g�1
g, h

�1
h)

= (eG, eH)

⇤
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Problem 2. List the elements of Z2⇥Z2, and then make an operation
table for the operation defined above. ”(Note: with this we have at last
proved that the Klein four-group is really a group, in particular that its
operation is really associative.)”
Elements in Z2 ⇥ Z2 : (0, 0), (0, 1), (1, 0), (1, 1)
Operation table:

(0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) (0, 0) (0, 1) (1, 0) (1, 1)
(0, 1) (0, 1) (0, 0) (1, 1) (1, 0)
(1, 0) (1, 0) (1, 1) (0, 0) (0, 1)
(1, 1) (1, 1) (1, 0) (0, 1) (1, 0)

Problem 3. Is the direct product group Z2 ⇥ Z2 isomorphic to Z4?
Prove your answer.

Proof. Operation table of Z4:
0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

In direct product group Z2 ⇥ Z2, there are (0, 0)2 = (0, 0), (0, 1)2 =
(0, 0), (1, 0)2 = (0, 0), However, in Z4, there are only 02 = 2, 22 = 2.
(Operation failed). It is not isomorphic.

⇤

Problem 4. ”(Direct products of rings)” Now let R and S be rings.
Define two binary operations on the Cartesian product set R ⇥ S by
the formulas (r1, s1) + (r2, s2) = (r1 + r2, s1 + s2) and (r1, s1)(r2, s2) =
(r1r2, s1s2). Show that with these operations, R ⇥ S also becomes a
ring, also called the ”direct product” of R and S.

Proof. .

(1) Additive Associativity:

[(r1, s1) + (r2, s2)] + (r3, s3) = (r1 + r2, s1 + s2) + (r3, s3)

= ((r1 + r2) + r3, (s1 + s2) + s3)

= (r1 + (r2 + r3), s1 + (s2 + s3))

= (r1, s1) + [(r2, s2) + (r3, s3)]



MATH361 NOTES 19

(2) Additive Identity:

(eR, eS)

(3) Additive Inversion:

(r�1
, s

�1)

(4) Additive Commutativity:

(r1, s1) + (r2, s2) = (r1 + r2, s1 + s2)

= (r2 + r1, s2 + s1)

= (r2, s2) + (r1, s1)

(R⇥ S,+) is an abelian group.
(5) Multiplicative Associativity

[(r1, s1)(r2, s2)](r3, s3) = (r1r2, s1s2)(r3, s3)

= ((r1r2)r3, (s1s2)s3)

= (r1(r2r3), s1(s2s3))

= (r1, s1)[(r2, s2)(r3, s3)]

(R⇥ S,+) is a semigroup.
(6) Distributive Law

[(r1, s1) + (r2, s2)](r3, s3) = (r1 + r2, s1 + s2)(r3, s3)

= ((r1 + r2)r3, (s1 + s2)s3)

= (r1r3 + r2r3), (s1s3 + s2s3)

= (r1r3, s1s3) + (r2r3, s2s3)

= (r1, s1)(r3, s3) + (r2, s2)(r3, s3)

(r1, s1)[(r2, s2) + (r3, s3)] = (r1, s1)(r2 + r3, s3 + s3)

= (r1(r2 + r3), s1(s2 + s3))

= ((r1r2 + r1r3), (s1s2 + s1s3))

= (r1r2, s1s2) + (r1r3, s1s3)

= (r1, s1)(r2, s2) + (r1, s1)(r3, s3)

(R,+, ·) is a ring.
⇤
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Problem 5. Show that if R and S are both commutative, then so is
R⇥ S.

(r1, s1)(r2, s2) = (r1r2, s1s2)

if R and S are both commutative, then

r1r2 = r2r1, s1s2 = s2s1

(r1r2, s1s2) = (r2r1, s2s1)

= (r2, s2)(r1, s1)

Problem 6. Show that if R and S are both unital, then so is R⇥ S.

Proof. If R is unital, then (R, ·) has an identity 1R; If S is unital, then
(S, ·) has an identity 1S.
Then (R⇥ S, ·) has an identity 1R⇥S = (1R, 1S)

(r1, s1)(1R, 1S) = (r11R, s11S)

= (r1, s1)

(1R, 1S)(r1, s1) = (1Rr1, 1Ss1)

= (r1, s1)

⇤
Problem 7. Make a multiplication table for the ring Z2 ⇥ Z2, and
explicitly identify the unity element of this ring.

(0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(0, 1) (0, 0) (0, 1) (0, 0) (0, 1)
(1, 0) (0, 0) (0, 0) (1, 0) (1, 0)
(1, 1) (0, 0) (0, 0) (0, 1) (1, 1)

There is no unity element.

Problem 8. ”(Zero-product property fails in direct products)” The real
number system has the well-known ”zero-product property:” if xy = 0
then either x = 0 or y = 0. Prove that this is ”not” true in arbitrary
rings, by giving an explicit counterexample in the ring Z2 ⇥ Z2.

Example: (1, 0)(0, 1) = (0, 0)
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Problem 9. ”(Zero-product property also fails for functions)” Now
consider the ring Fun(R,R) with the usual ”pointwise” operations that
we discussed in class. Show that the zero-product property also fails in
this ring, by giving two specific non-zero functions f and g with fg = 0.
”(Hint: you will almost certainly want f and g to be ”piecewise-defined”
functions.)”

f(x) = x, (x � 0)

f(x) = 0, (x < 0)

g(x) = �x, (x  0)

g(x) = 0, (x > 0)

f(x)g(x) = 0

Problem 10. ”(The zero ring)” Suppose R is any set with a single
element. Show that there is one and only one way of defining binary
operations + and · on R which turn R into a ring. Make operation
tables for + and ·. (Any ring with only a single element is called a
”zero ring.” Once we have defined what we mean by an ”isomorphism”
of rings, we will prove that all zero rings are isomorphic with one an-
other, and because of this we will sometimes speak of ”the” zero ring
rather than ”a” zero ring.)

Assume R = {k}, then:

+ k

k 2k

· k

k k
2

2k 2 R, k
2 2 R, there is only one element k 2 R, therefore, 2k =

k, k = 0; k2 = k, 02 = 0
k = 0 (or an element which means the same thing as 0 )
(R,+) is an abelian group, it is a trivial group.
(R, ·) is associative: r · (r · r) = r = (r · r) · r.
Also obeys distribution law.
It is a rin.

Problem 11. ”(The zero ring is unital)” Show that every zero ring
is in fact unital. Prove that in any zero ring, one has the surprising
equality 0R = 1R.
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Proof.
· k0

k0 k0

8a 2 R, a · k0 = a, k0 · a = a. k0 is the zero element 0R. 0R = k0.
8a 2 R, a · k0 = k0, k0 · a = k0, a

�1 = k0. a is the unity element 1R, and
a = k0. 1R = k0.
0R = 1R.

⇤
Problem 12. ”(The zero ring is the only ring in which 0R = 1R)”’
Suppose now that R is ”any” unital ring in which 0R = 1R. Prove that
R has only one element, and is thus a zero ring. ”(Hint: you will need
to use at least one of the three assertions in the Rules of Sign theorem
referenced above.)”

Proof. Let R be any ring, then 0R · a = 0R = a · 0R, 8a 2 R.
if 0R = 1R, then
1R · a = 0R = a · 1R.
There is only one zero element, therefore, there is only one unity ele-
ment here. If 1R is not the inverse of a, 1R · a 6= 0R. If 1R is the inverse
of a, 1R · a = 0R, and 0R · a = 1R · a = a = 0R. In this case, a = 0R.
The ring has to be a zero ring.

⇤
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3. Week3

Rings and Fields

3.1. Definitions. I Zero-divisor: Let R be a ring, and a 2 R. We
say that a is a left zero-divisor (may not be commutative) if 1. a 6= 0,
and 2. 9b 2 R, with b 6= 0 but ab = 0.
I Integral domain: An integral domain is a commutative, unital
ring, not the zero ring, which has no zero-divisor.
I Field:A field is a commutative, unital ring, not the zero ring, in
which every non-zero element is a unit.
I Subring: Suppose R is a ring, and S ✓ R. We say that S is a
subring of R if: 1. 0R 2 S 2. a, b 2 S ) a+ b 2 S 3. a 2 S ) �a 2 S

4. a.b 2 S ) ab 2 S

I Unital Subring: A unital subring of a unital ring R is a subring
which contains 1R. This is not the same as a subring which happens
to be unital (1S might be di↵erent.
I Zero (a.k.a. ”trivial”) subring: Let R be any ring, S = {0R} is
a subring. The zero subring or the trivial subring. This is the smallest
subring.
I Improper subring: et R be any ring, S = R is a subring. The
improper subring. This is the largest subring.
I Subring generated by a subset: Let R be a ring, A ✓ R be any
subset. The subring generated by A is the intersection of all substring
containing A.
I Prime subring (of a unital ring): Suppose R is any unital ring.
The prime subring of R is the subring generated by 1R. This is the
smallest unital subring.

3.2. Theorems. F Zero-product property (of integral domains): if D
is an integral domain, and a, b 2 D with ab = 0, then either a = 0
or b = 0.
F Cancellation law (in integral domains): Suppose D is a domain,
a 6= 0, and ab = ac. Then b = c.
F Theorem relating fields to integral domains: Every field is an inte-
gral domain.
F Theorem characterizing the units and zero-divisors of Zn: Suppose
[a] 2 Z and [a] 6= 0. Then, 1. If gcd(a, n) = 1, then [a] is a unit of Zn.
2. If gcd(a, n) 6= 1, then [a] is a zero-divisor of Zn.
F Theorem characterizing when Zn is a field, and when it is an integral
domain: If n is prime, then Zn is a field. If n is composite, then Zn is
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not even an integral domain.
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3.3. Notes.

3.3.1. Zero divisor.

Definition 11. Let R be a ring, and a 2 R. We say that a is a left

zero-divisor (may not be commutative) if

(1) a 6= 0, and
(2) 9b 2 R, with b 6= 0 but ab = 0.

Explanation
Problem: In a general unital ring, solve the equation x

2 = x.
Solve using zero-product property in high school:

x
2 = x

x
2 � x = 0

x(x� 1R) = 0R
x = 0 or x� 1 = 0

Potential solutions: x = 0 or x = 1
check: 02 = 0 · 0 = 0
12 = 1 · 1 = 1

However, now we solve the problem in Z6:

x x
2

0 0
1 1
2 4
3 3
4 4
5 1

In Z6, 0, 1, 3, 4 are all solutions. We are missing solutions 3, 4 by using
zero-product property in high school.
WARNING: In some rings, techniques of High School Algebra may
miss some solutions.
Reaction: Z6 is a bad ring, because High School Algebra doesn’t really
work there.)
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Example of left zero-divisors in Z6:

0 :N

1 :N

2 :Y, 2 · 3 = 0

3 :Y, 3 · 2 = 0

4 :Y, 4 · 3 = 0

5 :N

We are most concerned with the commutative case, and here there
is no distinction between left and right zero-divisors.

3.3.2. Integral Domain.

Definition 12. An integral domain is a commutative, unital ring,
not the zero ring, which has no zero-divisor.

Example: Z5 has no zero-divisor.
Find the zero-divisors in Z5:
· 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1
There is no zero-divisor according to the table.
Z5 is an integral domain; Z6 is not an integral domain.

3.3.3. Zero-Product Property.

Theorem 6. Zero-Product Property

If D is an integral domain, and a, b 2 D with ab = 0, then either
a = 0 or b = 0.

3.3.4. Cancellation Law.

Theorem 7. Cancellation Law

Suppose D is a integral domain, a 6= 0, and ab = ac. Then b = c.



MATH361 NOTES 27

Proof.

ab = ac

ab� ac = 0

a(b� c) = 0

b� c = 0

b = c

⇤
3.3.5. Units and ”Divition”.
it is very rare for 0 to have inverse.

3.3.6. Zero Ring and Inverse.

Theorem 8. If R is any unital ring in which 0 has a multiplication
inverse, then R = {0}.

Proof. Suppose 0 has an inverse.

0 = 0 · 0�1 = 1

⇤
3.4. Fields.

Definition 13. A field is a commutative, unital ring, not the zero
ring, in which every non-zero element is a unit.

Example 7.

Q

1Q =
1

1

(
a

b
)�1 =

b

a

R,C

Example 8. Non-example Z
only units are 1 and �1
Z is not a field.

If we are in a field, we may speak of ”diviing by a”. This means
multiplying by a

�1.
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3.4.1. Fields and Integral Domain.

Theorem 9. Every field is an integral domain.

Proof. Suppose F is a field.
Need to prove: there are no zero-divisor.
Suppose to the contrary that a 2 F is a zero-divisor. Then a 6= 0 and
9b 6= 0 with

ab = 0

a
�1(ab) = a

�10

b = 0 (contradiction) .

⇤
3.5. Universe of Ring Theory.

rings

commutative rings
(unital)

integral domains

fields

Where does Zn appear on this map?
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3.6. Unit and Zero-Divisor of Zn.

Theorem 10. Suppose [a] 2 Z and [a] 6= 0. Then,

(1) If gcd(a, n) = 1, then [a] is a unit of Zn.
(2) If gcd(a, n) 6= 1, then [a] is a zero-divisor of Zn.

Proof.

[a][
n

gcd(a, n)
] = [

an

gcd(a, n)
]

= [
a

gcd(a, n)
][n]

when gcd(a, n) 6= 1,
a

gcd(a, n)
2 Z

a

gcd(a, n)
= k

[k][0] = [k0]

= [0]

⇤
Remark: In Zn, every element is either zero, or a unit, or a zero-

divisor.
DON’T BE FOOLED: This is NOT true in general rings. For example:
in Z, 2 is not zero, not a unit, and not a zero-divisor.

Example 9. Z23

everything other than 0 will be a unit, because 23 is prime.

Corollary 1. If n is prime, then Zn is a field. If n is composite, then
Zn is not even an integral domain.

Remark: Zp is a field. We can do +,�, ·,÷. There, least familiar
aspect is inversion. Done on computers with the Extended Euclidean
Algorithm.

3.6.1. Extended Euclidean Algorithm to find inverse in Zn.
In Zn, compute:

(a, n) 7! (gcd(a, n), x, y)

ax+ ny = gcd(a, n)

[x] = [a]�1 in Zn

Remark: Almost all of Linear Algebra works without modification if
scalars and matrix entries come from an arbitrary field. (Concepts and
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algorithms involving inner products (dot products) can develop subtle
bugs.

3.7. Substrings.

Definition 14. Subrings
Suppose R is a ring, and S ✓ R. We say that S is a subring of R if:

(1) 0R 2 S

(2) a, b 2 S ) a+ b 2 S

(3) a 2 S ) �a 2 S

(4) a.b 2 S ) ab 2 S

Example 10. 2Z is a subring of Z
Note: a substring of a unital ring might not be unital. Z is a unital
ring with the identity 1Z = 1. However, 2Z does not have an identity.
2Z is not a unital ring.

Example 11. R = Z⇥ Z, S = {(x, 0)|x 2 Z}
S  R

R is unital, 1R = (1, 1)
S is unital, 1S = (1, 0)
1R 6= 1S

3.8. Unital Substrings.

Definition 15. Unital Subring

A unital subring of a unital ring R is a subring which contains 1R.
This is not the same as a subring which happens to be unital (1S might
be di↵erent.

3.9. Zero/Trivial Substrings.

Example 12. Let R be any ring, S = {0R} is a subring. The zero

subring or the trivial subring. This is the smallest subring.

3.10. Improper Substrings.

Example 13. Let R be any ring, S = R is a subring. The improper

subring. This is the largest subring.

Definition 16. Subring generated by a subset

Let R be a ring, A ✓ R be any subset. The subring generated by A is
the intersection of all substring containing A.
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3.11. Prime Substrings.

Definition 17. Suppose R is any unital ring. The prime subring of
R is the subring generated by 1R. This is the smallest unital subring.

Example 14. R = Q
⌧
{1
1
}
�

= {· · · ,�1

1
,
0

1
,
1

1
,
2

1
, · · · } = Z
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3.12. Problems.

Problem 13. Book Problem 1
Find all solutions of the equation x

3 � 2x2 � 3x = 0 in Z12.
Using Mods.java (function temp1) to calculate:
jingwens-MBP:src jingwenfeng javac Mods.java
jingwens-MBP:src jingwenfeng java Mods 12
0 3 5 8 9 11

Problem 14. Book Problem 2
Solve the equation 3x = 2 in the field Z7; in the field Z23.
(function temp2)
jingwens-MBP:src jingwenfeng java Mods 7
3
jingwens-MBP:src jingwenfeng java Mods 23
16

Problem 15. Book Problem 3
Find all solutions of the equation x

2 + 2x+ 2 = 0 inZ6.
(function temp3)
jingwens-MBP:src jingwenfeng java Mods 7
No solution

Problem 16. Book Problem 4
Find all solutions of the equation x

2 + 2x+ 4 = 0 inZ6.
(function temp4)
jingwens-MBP:src jingwenfeng java Mods 6
2
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Problem 17. Book Problem 14

Show that the matrix


1 2
2 4

�
is a divisor of zero in M2(Z).


1 2
2 4

� 
a b

c d

�
=


0 0
0 0

�

(
a+ 2c = 0

b+ 2d = 0
(
a = �2c
b = �2d

)

1 2
2 4

�
is a left zero divisor


a b

c d

� 
1 2
2 4

�
=


0 0
0 0

�

(
a+ 2b = 0

2c+ 4d = 0
(
a = �2b
c = �2d

)

1 2
2 4

�
is a right zero divisor

Problem 18. Describe the prime subrings of Q, of R, and of C.
Answer: Z

Problem 19. Describe the prime subring of Z.
Answer: Z

Problem 20. Describe the prime subring of Zn.
Answer: Zn

In Zn, h1i = {0, 1, 2, 3, · · ·n� 1}

Problem 21. Working in the field Z3, solve the equation x
3 = x.

0 ⇤ 0 ⇤ 0 = 0

1 ⇤ 1 ⇤ 1 = 1

2 ⇤ 2 ⇤ 2 = 8 = 2(mod3)

Answer: 0, 1, 2
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Problem 22. Working in the field Z5, solve the equation x
5 = x.

Answer: 0, 1, 2, 3, 4

Problem 23. Working in the field Z7, solve the equation x
7 = x.

Answer: 0, 1, 2, 3, 4, 5, 6

Problem 24. By now you probably have a conjecture about Z11. Do
not try to prove this. Instead, prove the conjecture for Zp where p is
an arbitrary prime. ”(Hint: the conjecture is obviously true if x = 0.
Otherwise x is an element of the group of units of Zp (why?). But as
we have seen, Lagrange’s Theorem implies that in ”any” group G we
have g

|G| = e for every g 2 G. This gives rise to a certain identity for
non-zero elements of Zp. Multiplying both sides of this identity by x

will prove the conjecture.)”

R = Zp/{0} is a cyclic group

g
|R| = e, g 2 R
|R| = p� 1

g
p�1 = e

gg
p�1 = ge

gg
�1
g
p = ge

g
p = g

Problem 25. Show by a simple counterexample (e.g. in Z6) that the
result above is ”not” generally true in Zn when n is composite. Exactly
which part of your proof above breaks in the composite case?

gg
�1
g
p = ge

However, g is a zero-divisor when gcd(g, n) 6= 1 and g doesn’t have an
inverse. We are not able to find g

�1.

Problem 26. Try to correctly generalize the conjecture to the compos-
ite case (i.e. formulate and prove a statement which encompasses the
prime case but is also true in the composite case). In doing this you will
be following in the footsteps of Leonhard Euler; this result (like many
others) is known as ”Euler’s Theorem,” and it is in fact the mathemat-
ical basis of RSA encryption.

g
n = g when gcd(g, n) = 1, g 2 Zn (or g = 0)



MATH361 NOTES 35

4. Week4

4.1. Definitions. IHomomorphism (of rings): SupposeR, S are rings.
A function � : R! S is a homomorphism (or morphism) if

(1) �(r1 + r2) = �(r1) + �(r2)
(2) �(r1r2) = �(r1)�(r2)

8r1, r2 2 R. A morphism is said to be a monomorphism if it’s injective.

A morphism is said to be a epimorphism if it’s surjective.

A morphism is said to be an isomorphism if it’s bijective.
I Unital homomorphism (of unital rings): A morphism � between
unital rings is said to be a unital morphism if �(1R) = 1S.

I Pushforward (of a subring under a homomorphism; a.k.a. ”for-
ward image”):

Suppose f : A ! B is a function, C ✓ A, then f [c] = {f(c)|c 2 C}
(pushforward of C).

I Pullback (of a subring under a homomorphism; a.k.k. ”pre-
image”):

Suppose f : A ! B is a function, D ✓ B, then f
�1[D] = {a 2

A|f(a) 2 D} (pushforward of C).
I Image (of a ring homomorphism): �[R] = im�

I Kernel (of a ring homomorphism): ��1[{0S}] = ker�

I Ideal: Let R be any ring. A left ideal of R is a subring I  R

which absorbs left products fromR (if i 2 I and e 2 R then also ri 2 I).
If I is simultaneosly a ;eft and a right ideal, then I is an ideal.

I R/I (the ”quotient” of the ring R by the two-sided ideal I): Sup-
pose R is a ring. and I is an ideal of R. Then (I,+) P (R,+)
[a] = a+ I := {a+ r : r 2 I}
R/I becomes a quotient ring if:

(1) (a+ I) + (b+ I) = (a+ b) + I

(2) (a+ I)(b+ I) = (ab) + I

From group theory: R/I is a group under coset addition.
I Addition (in R/I, i.e. coset addition): (r1 + I) + (r2 + I) =

(r1 + r2) + I

IMultiplication (in R/I, i.e. coset multiplication): (r1+I)(r2+I) =
(r1r2) + I

I Principal Ideals: Let R be any unital ring, and let a 2 R. Define
Ra = {ra|r 2 R}. Ra is a left ideal, and is in fact the smallest left
ideal that contains a.
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4.2. Theorems. F Theorem concerning �(0R), where � : R ! S is
a ring homomorphism: f � : R ! S is a morphism, then �(0R) = 0S.
BUT �(1R) may or may not be 1R.

F Examples of ring homomorphisms � : R! S to show that �(1R)
”may or may not” equal 1S, even when R and S are both unital: If
� : R ! S is a morphism, then �(0R) = 0S. BUT �(1R) may or may
not be 1R.

Proof. Note that (R, ·R) and (S, ·S) are usually semigroups. They are
usually not groups.
� : Z! Z⇥ Z,�(n) = (n, 0);�(1) = (1, 0) 6= (1, 1). ⇤

F Theorem characterizing the properties of the pushforward of a
subring (i.e. ”The pushforward of a subring is a...”): Suppose � : R!
S is a morphism.
if T  R, then �[T ]  S (If we push forward a subring, we get another
subring on the other side).
If U  S then ��1[U ]  R.

F Theorem characterizing the properties of the pullback of a subring
(i.e. ”The pullback of a subring is a...”): �[R] = im�

�
�1[{0S}] = ker�

Note:
� is epimorphism iffim� = S

� is monomorphism iffker� = {0R}
(Already proved this for groups. )

F Kernels-Absorb-Products-Theorem: Suppose � : R ! S is a
morphism. If k 2 ker� and r 2 R then rk 2 ker� and kr 2 ker�.

F Theorem characterizing the special properties of kernels (i.e. ”Ker-
nels absorb...” or ”Kernels are...”): Kernels are ideals.

F Theorem characterizing ideals which contain units: Suppose I is
an ideal of R which contains a unit, then I = R.

F Theorem characterizing the ideals of a field: In any field F , the
only ideals are {0} and F .

F Theorem characterizing when coset multiplication is well-defined
(i.e. ”Multiplication in R/I is well-defined provided that I is an...”):
When I is an ideal, multiplication in R/I is well-defined.

F Equality test for elements of R/I: Choose any two elements r1+I

and r2 + I. If r1 � r2 2 I, then r1 +R = r2 +R.
F If R is a ring and I is an ideal of R, then R/I is a ring under

coset + and coset·. If R is commutative, so is R/I. If R is unital, so is
R/I.



MATH361 NOTES 37

4.3. Homomorphisms.

Definition 18. Homomorphism Suppose R, S are rings. A function
� : R! S is a homomorphism (or morphism) if

(1) �(r1 + r2) = �(r1) + �(r2)
(2) �(r1r2) = �(r1)�(r2)

8r1, r2 2 R.

A morphism is said to be a monomorphism if it’s injective.

A morphism is said to be a epimorphism if it’s surjective.

A morphism is said to be an isomorphism if it’s bijective.

Example 15. ⇡ : Z! Zn, ⇡(j) = [j]⌘n

⇡(j + k) = [j + k]

= [j] + [k]

= ⇡(j) + ⇡(k)

⇡(jk) = [jk] = [j][k]

This is an epimorphism.
Observe: ⇡(0Z) = 0Zn

⇡(1Z) = 1Zn

Example 16. Let R and S be arbitrary rings. Define
⇡1 : R⇥ S ! R

⇡1((r, s)) = r

⇡1 is a morphism.

⇡1((r1, s1) + (r2, s2))

= ⇡1((r1 + r2, s1 + s2))

= r1 + r2

= ⇡1((r1, s1)) + ⇡1((r2, s2))

This is an epimorphism. (It is injective only if S is a zero ring.)

Example 17. Let R and S be arbitrary rings. Define
◆ : R! R⇥ S by ◆(r) = (r, 0S)
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Check:

◆(r1 + r2) = (r1 + r2, 0S)

◆(r1) + ◆(r2) = (r1, 0S) + (r2, 0S)

= (r1 + r2, 0S)

This is an monomorphism. Epimorphism only when S = {0S}

◆(0R) = (0R, 0S) = 0R⇥S

◆(1R) = (1R, 0S) 6= 1R⇥S

(unless S = {0S})

4.3.1. Theorem concerning �0R).

Theorem 11. If � : R ! S is a morphism, then �(0R) = 0S. BUT
�(1R) may or may not be 1R.

Proof. (R,+R) and (S,+S) are groups. Also � is a group morphism.
We’ve already proved that these take e to e.
Note that (R, ·R) and (S, ·S) are usually semigroups. They are usually
not groups.

⇤

4.3.2. Unital Morphism.

Definition 19. Unital Morphism

A morphism � between unital rings is said to be a unital morphism if
�(1R) = 1S.

4.4. Push forward and Pullback. .

�

R
S

T �[T ]



MATH361 NOTES 39

�

R
S

�
�1[U ] U

Definition 20. Push forward and Pullback

Suppose � : R! S is a morphism.
if T  R, then �[T ]  S (If we push forward a subring, we get another
subring on the other side).
If U  S then ��1[U ]  R.
�[R] = im�

�
�1[{0S}] = ker�

Note:
� is epimorphism iffim(�) = S

� is monomorphism iffker(�) = {0R}
(Already proved this for groups).

Theorem 12. Kernels-Absorb-Products-Theorem

Suppose � : R ! S is a morphism. If k 2 ker� and r 2 R then
rk 2 ker� and kr 2 ker�.

Proof.

�(k) = 0S

�(rk) = �(r)�(k)

= �(r)�(k)

= �(r)0S
= 0S

so rk 2 ker(�) ⇤

Example 18. Z is a substring of R, but Z can NEVER be a kernel of
any homomorphism defined on R.
Z does not absorb products fromR:
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1 2 Z
1

2
= R

(
1

2
)(1) 62 Z

Definition 21. Ideal Let R be any ring. A left ideal of R is a subring
I  R which absorbs left products fromR (if i 2 I and r 2 R then also
ri 2 I).
If I is simultaneosly a ;eft and a right ideal, then I is an ideal.

Theorem 13. Kernels are ideals.

A big class of examples - principal ideals.

Definition 22. Principal Ideals

Let R be any unital ring, and let a 2 R. Define Ra = {ra|r 2 R}

Theorem 14. Ra is a left ideal, and is in fact the smallest left ideal
that contains a.

Proof. 0 2 Ra because 0 = 0a.
Suppose x1, x2 2 Ra. Write

x1 = r1a, x2 = r2a

x1 + x2 = r1a+ r2a

= (r1 + r2)a

2 Ra

Ra absorbs left products:
x 2 Ra and r 2 R

x = r
0
a, r 2 R (some s 2 R)

rx = r(r0a) = (rr0)a 2 Ra.
Ra is the principle left ideal generated by a. Ra contains a: a = 1R · a.

⇤

Example 19. (in Z)

Z0 = {0} = 0Z
1Z = {· · · ,�1, 0, 1, 2, 3, · · · } = Z

(�1)Z = Z
2Z = {· · · ,�2, 0, 2, 4, 6, · · · }
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Example 20. (in R)
0R = {0}
1R = R

(�1)R = R
1

2
R = R

2R = R
In general, Ru = R for any unit u.

Proof. Ru ✓ R by definition (R is closed under its own · ). Other
direction: choose any r 2 R. Then r = (ru�1)u 2 Ru. ⇤
Theorem 15. Suppose I is an ideal of R which contains a unit, then
I = R.

Proof. Suppose u 2 I is a unit. Choose any r 2 R. Then r = (ru�1)u 2
I. (ru�1 2 R, u 2 I).

⇤
Corollary 2. In any field F , the only ideals are {0} and F .
ideals of Z : nZ(n � 0)

4.5. Quotient Rings.

Definition 23. Quotient Rings

Suppose R is a ring. and I is an ideal of R. Then (I,+) P (R,+)
From group theory: R/I is a group under coset addition.

Definition 24. (r1 + I) + (r2 + I) = (r1 + r2) + I (from group theory:
R/I is a group under coset addition)

(r1 + I)(r2 + I) = (r1r2) + I

Might not be well-defined: (R, ·) is not a group.

Theorem 16. When I is an ideal, this operation is well-defined.

Proof. Soppose
r1 + I = s1 + I

and
r2 + I = s2 + I

Then
r1 � s1 2 I
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say r1 � s1 = i1

r2 � s2 2 I

say r2 � s2 = i2

r1 = i1 + s1

r2 = i2 + s2

r1r2 = (i1 + s1)(i2 + s2)

= (i1 + s1)i2 + (i1 + s1)s2
= i1i2 + s1i2 + i1s2 + s1s2

r1r2 = s1s2

anything with i are in I.
Therefore, r1r2 � s1s2 2 I

(r1r2) + I = (s1s2) + I ⇤
Theorem 17. If R is a ring and I is an ideal of R, then R/I is a
ring under coset + and coset·. If R is commutative, so is R/I. If R is
unital, so is R/I.

Proof. The unity of R/I is 1R + I:

(1R + I)(a+ I) = (1Ra) + I = a+ I

(a+ I)(1R + I) = (a1R) + I = a+ I

⇤
Example 21. R = Z, I = 3Z.
+ 0 + I 1 + I 2 + I

0 + I 0 + I 1 + I 2 + I

1 + I 1 + I 2 + I 0 + I

2 + I 2 + I 0 + I 1 + I

· 0 + I 1 + I 2 + I

0 + I 0 + I 0 + I 0 + I

1 + I 0 + I 1 + I 2 + I

2 + I 0 + I 1 + I 1 + I

Remark 1: Z/nZ = Zn.

Remark 2: Z was an integral domain. Z/pZ is a field. But if n is
composite, then Z/nZ is not even an integral domain.

Example 22. Take R = R[x]. This means the ring of polynumial

functions from R to R.
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e.g.

3

2
x
5 + 2x� 5 2 R[x]

3x+ 4x�1 62 R[x]
sin(x2 + 1) 62 R[x]

Also take I = (R[x])(x2 + 1)

1R/I = 1 + I

�1R/I = �1 + I

↵ = x+ I

↵
2 = (x = I)(x+ I)

= x
2 + I

Equality test for cosets (b�1
a 2 I):

x
2 � (�1) = x

2 + 1

= 1(x2 + 1) 2 I

so: ↵2 = �1 (in R[x]/
⌦
x
2 + 1

↵
)

This ↵ is usually denoted i. And R/I = C.

Example 23. Take R = R[x]; take I = ([x])(x2 � 1)
In R/I, take ↵ = (x+ 1) + I, � = (x� 1) + I.
↵� = ((x+ 1) + I)((x� 1) + I) = (x2 � 1) + I = 0 + I.
(Take the di↵erence of (x2�1) and 0 to see if it is in I = (R[x])(x2�1)).
Is ↵ = 0?
x + 1 � 0 = x + 1. Is this a multiple of x2 � 1? No. So a 6= 0. Also
� 6= 0.
This R/I is not an integral domain.

(1) Z/nZ: field if n is prime, not integral domain if n is composite.
(2) R[x]/(x2 + 1) is a field.
(3) R[x]/(x2 � 1) is not an integral domain.
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4.6. Problems.

Problem 27. Section 26, problems 4.
Give addition and multiplication tables for 2Z/8Z. Are 2Z/8Z and Z4

isomorphic rings?

+ 0 + 8Z 2 + 8Z 4 + 8Z, 6 + 8Z
0 + 8Z 0 + 8Z 2 + 8Z 4 + 8Z 6 + 8Z
2 + 8Z 2 + 8Z 4 + 8Z 6 + 8Z 0 + 8Z
4 + 8Z 4 + 8Z 6 + 8Z 0 + 8Z 2 + 8Z
6 + 8Z 6 + 8Z 0 + 8Z 2 + 8Z 4 + 8Z
· 0 + 8Z 2 + 8Z 4 + 8Z, 6 + 8Z
0 + 8Z 0 + 8Z 0 + 8Z 0 + 8Z 0 + 8Z
2 + 8Z 0 + 8Z 4 + 8Z 0 + 8Z 4 + 8Z
4 + 8Z 0 + 8Z 0 + 8Z 0 + 8Z 0 + 8Z
6 + 8Z 0 + 8Z 4 + 8Z 0 + 8Z 4 + 8Z
Not isomorphic rings. Z4 has unity but 2Z/8Z does not.

Problem 28. Section 26, problems 17.
Let R = {a + b

p
2|a, b 2 Z} and let R0 consist of all 2 ⇥ 2 matrices

of the form

✓
a 2b
b a

◆
for a, b 2 Z. Show that R is a subring of R and

that R
0 is a subring of M2(Z). Then show that � : R ! R

0, where

�(a+ b
p
2) =

✓
a 2b
b a

◆
is an isomorphism.

k1 = a1 + b1

p
2 2 R, k2 = a2 + b2

p
2 2 R, a1, a2, b1, b2 2 R

(1) 0R = 0 + 0
p
2 2 R

(2) k1 + k2 = (a1 = a2) + (b1 + b2)
p
2 2 R

(3) �k1 = (�a1) + (�b)
p
2 2 R

(4) k1k2 = a1a2+(a1b2+a2b1)
p
2+2b1b2 = (a1a2+2b2b2)+ (a1b2+

a2b1)
p
2

k1 =

✓
a1 2b1
b1 a1

◆
2 R, k2 =

✓
a2 2b2
b2 a2

◆
2 Z

(1) 0M2(Z) =

✓
0 0
0 0

◆
2 R

0

(2) k1 + k1 =

✓
a1 + a2 2(b1 + b2)
b1 + b2 a1 + a2

◆
2 R

0

(3) �k1 =
✓
�a1 �2b1
�b1 �a1

◆
2 R

0
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(4) k1k2 =

✓
a1a2 + 2b1b2 2a1b2 + 2b1a2
b1a2 + a1b2 2b1b2 + a1a2

◆
2 R

0

Injective, surjective.

�(a1 + b1

p
2)�(a2 + b2

p
2) =

✓
a1a2 + 2b1b2 2a1b2 + 2b1a2
b1a2 + a1b2 2b1b2 + a1a2

◆

�((a1 + b1

p
2)(a2 + b2

p
2)) = �((a1a2 + 2b2b2) + (a1b2 + a2b1)

p
2)

=

✓
(a1a2 + 2b2b2) 2(a1b2 + a2b1)
(a1b2 + a2b1) (a1a2 + 2b2b2)

◆

= �(a1 + b1

p
2)�(a2 + b2

p
2).

Problem 29. Section 26, problems 18. Show that each homomorphism
from a field to a ring is either one to one or maps everything onto 0.
Kernel of a homomorphism is an ideal.
According to our theorems, in any field F , the only ideals can be F or
{0}.
ker(f) = {0}, it is one-to-one.
ker(f) = F, 8x 2 F, f(x) = 0, maps everything to 0.

Problem 30. ”’(Canonical projection)”’ Suppose I is an ideal of a
ring R. Define a map ⇡ : R! R/I by the formula ⇡(r) = r+ I. Show
that ⇡ is an epimorphism, and that it is a unital epimorphism whenever
R is a unital ring.

⇡(r1 + r2) = r1 + r2 + I

= (r1 + I) + (r2 + I)

= ⇡(r1)⇡(r2)

⇡(r1r2) = r1r2 + I

⇡(r1)⇡(r2) = (r1 + I)(r2 + I)

= r1r2 + (r1 + r2)I + I
2

anything with I is in I

⇡(r1)⇡(r2) = r1r2 + I

⇡(r1r2) = ⇡(r1)⇡(r2)

It is surjective, therefore epimorphism.

Problem 31. Let ⇡ : R ! R/I be the canonical projection defined
above. Calculate ker(⇡).



46 JINGWEN FENG

⇡(r) = 0R/I

r + I = 0R + I

r � 0R 2 I

r 2 I

ker(⇡) = I

Problem 32. Prove that R/{0} is always isomorphic to R itself. ”(Hint:
use the your calculation of ker(⇡) from the last problem.)”
R/{0} w R

⇡ : R! R/{0} is always an epimorphism. But ker(⇡) = {0}. So ⇡ is
also a monomorphism.

Problem 33. Prove that R/R is always a zero ring. ”(Hint: use the
equality test for cosets.)”
Check if R/R has a single element.
Choose any two elements r1 +R, r2 +R.

r1 � r2 2 R

r1 +R = r2 +R

R only contains one element, which is 0. R is a zero string.

Problem 34. We shall see next week that there is one and only one
ring homomorphism � : Z! Z2⇥Z3 for which �(1) = (1, 1). Write the
table of values for this homomorphism, then describe im(�) and ker(�).
x �(x)
0 (0, 0)
1 (1, 1)
2 (0, 2)
3 (1, 0)
4 (0, 1)
5 (1, 2)
im(�) = Z2 ⇥ Z3; ker(�) = 6Z

Problem 35. Repeat the above exercise with Z2⇥Z4 in place of Z2⇥Z3.
x �(x)
0 (0, 0)
1 (1, 1)
2 (0, 2)
3 (1, 3)
4 (0, 0)
im(�) = Z2 ⇥ Z4; ker(�) = 4Z
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Problem 36. By comparing the previous two exercises, see whether
you can make any conjecture about the relationship between Za ⇥ Zb

and Zab. (If you manage this then you will have re-discovered the an-
cient and beautiful ”Chinese Remainder Theorem” (CRT), which we
will study next week.)

Za ⇥ Zb w Zab i↵ gcd(a, b) = 1.
Z ab

gcd(a,b)
is isomorphic to prime elements of Za ⇥ Zb.
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5. Week5

5.1. Definitions(A5). I The ”initial morphism” from Z to any
unital ring R: let R be any unital ring. Then there exists one and only
one unital morphism ◆ : Z ! R. We call this ◆ the initial morphism
into R.
Example:
Compute the initial morphism ◆ : Z! Z2 ⇥ Z3.
x �(x)
0 (0, 0)
1 (1, 1)
2 (0, 2)
3 (1, 0)
4 (0, 1)
5 (1, 2)

In this case, im(◆) = Z2 ⇥ Z3; ker(◆) = 6Z.

Z Z2 ⇥ Z3

Z6

�

⇡ �̂

I char(R) (the ”characteristic” of a unital ring R): Kernel: this is
less predictable. All we know in general is that this is an ideal of Z.
But every ideal of Z has the form nZ for some unique non-negative
generator n. This unique non-negative generator for ker(◆) is called
the characteristic of R, denoted char R.
Example:
Calculate char Z3.
x ◆(x)
�1 [2]
· · · · · ·
0 [0]
1 [1]
2 [2]
3 [0]
4 [1]
5 [2]
· · · · · ·
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◆(3) = ◆(1) + ◆(2); char Z3 = 3; In general, char Zn = n.

I The ”prime subring” of a unital ring R: Suppose R is any
unital ring. The prime subring of R is the subring generated by 1R.
This is the smallest unital subring.
Example:
R = Q

⌧
{1
1
}
�

= {· · · ,�1

1
,
0

1
,
1

1
,
2

1
, · · · } = Z

I Zero-divisor (in a commutative ring R): Let R be a ring, and
a 2 R. We say that a is a left zero-divisor (may not be commutative)
if

(1) a 6= 0, and
(2) 9b 2 R, with b 6= 0 but ab = 0.

I Integral domain: An integral domain is a commutative, uni-
tal ring, not the zero ring, which has no zero-divisor.
Example:
Z5 has no zero-divisor.
Find the zero-divisors in Z5:
· 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1
There is no zero-divisor according to the table. Z5 is an integral do-
main; Z6 is not an integral domain.

I Field: A field is a commutative, unital ring, not the zero ring, in
which every non-zero element is a unit.
Example:

Q

1Q =
1

1

(
a

b
)�1 =

b

a

R,C
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5.2. Theorems (A5). F Theorem relating the prime subring
to the characteristic (i.e. ”The prime subring of a unital ring R is
an isomorphic copy of...”): The prime subring of a unital ring R is an
isomorphic copy of the smallest unital subring

F Formula for char(Za ⇥ Zb): char(Za ⇥ Zb) = char(Zlcm(a,b))

F Chinese Remainder Theorem: Za ⇥ Zb is isomorphic to Zab

i↵ gcd(a, b) = 1.

F Theorem concerning the characteristic of an integral do-
main:

(1) Zero-Product Property
If D is an integral domain, and a, b 2 D with ab = 0, then
either a = 0 or b = 0.

(2) Cancellation Law
Suppose D is a integral domain, a 6= 0, and ab = ac. Then
b = c.
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5.3. Definition (A6). I Euler totient function (as examples please
give one or two illustrative calculations of its values; non-examples are
not sensible or needed in this case): The Euler Totient is the function

� :Z>0 ! Zdefined by

�(n) = |U(Zn)|
�(p) = p� 1

5.4. Theorem (A6). F Theorem characterizing the units of Zn (i.e.
[a] 2 Zn is a unit if and only if...): [a] 2 Zn is a unit if and only if a is
a coprime to n

F Formula for �(pk) when p is prime:�(pk) = p
k � p

k�1

F Formula for �(ab) when gcd(a, b) = 1: �(ab) = �(a)�(b)

F Formula for �(n) when the prime factorization n = p
k1
1 . . . p

kl

l
is

known: �(n) = n(1� 1
p1
)(1� 1

p2
) · · · (1� 1

pk
)
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5.5. FTH: Foundamental Theorem of Homomorphism.

Theorem 18. FTH: Foundamental Theorem of Homomor-

phism

Suppose � : R ! S is a ring morphism. Let ⇡ : R ! R/ker� be
canonical projection. Then 9!monomorphism�̂ : R/ker� ! S such
that ˆphi � ⇡ = �. (!: unique).

R S

R/ker�

�

⇡ �̂

Proof. R, S and R/ker� are all groups under +. And � is a group mor-
phism. Apply group theory FTH. We get unique group monomorphism
�̂ with �̂ � ⇡ = �.

�̂(r + ker(�) = �(r)

Now check :

�̂((r1 + ker(�)(r2 + ker(�) = �̂(r1r2 + ker(�))

= �(r1r2)

OTOH,

�̂(r1 + ker(�))�̂(r2 + ker(�)) = �(r1)�(r2)

These are equal because � is a ring morphism. ⇤
5.6. The initial morphism and the characteristic of a unital
ring.

Definition 25. Equalizer

Suppose � : R! S and  : R! S are both morphisms. The equalizer
of � and  is the set of inputs where � and  agree: Eq(�, ) = {r 2
R|�(r) =  (r)}.
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Lemma 1. Eq(�, )is a substring of R

Proof.

�(0R) = 0S

 (0R) = 0S

0R 2 Eq(�, )

now suppose r 2 Eq(�, )

Then �(�1) = ��(r)
 (�r) = � (r)
so � r 2 Eq(�, )

Suppose r1, r2 2 Eq(�, ).

�(r1 + r2) = �(r1) + �(r2)

=  (r1) +  (r2)

=  (r1 + r2)

so r1 + r2 2 Eq(�, )

Suppose r1, r2 2 Eq(�, ).

�(r1r2) = �(r1)�(r2)

=  (r1) (r2)

=  (r1r2)

so r1r2 2 Eq(�, )

⇤
Definition 26. initial morphism

let R be any unital ring. Then there exists one and only one unital
morphism ◆ : Z! R. We call this ◆ the initial morphism into R.

Proof. (Uniqueness)
Suppose ◆1 : Z! R and ◆2 : Z! R are both unital morphisms.
Then Eq(◆1, ◆2) is a subring of Z. It contains 1 because ◆1, ◆2 are both
unital. Thus Eq(◆1, ◆2) = Z so ◆1 = ◆2.
(Existence)
Define

◆(n) = n · 1R (nth multiple of 1R)

◆(n1 + n2) = (n1 + n2)1R

= n11R + n21R (laws of multiples)
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x ◆(x)
· · · · · ·
�1 �1R
0 0R
1 1R
2 1R + 1R
3 1R + 1R + 1R
· · · · · ·

Sketch of proof for multiplication:

�(n ·m) = 1R + 1R + · · ·+ 1R(nm times)

◆(n)◆(m) = (1R + · · ·+ 1R)(1R + · · ·+ 1R) (n and m times)

= 1R + · · ·+ 1R (nm times)

⇤

Example 24. Compute the initial morphism ◆ : Z! Z2 ⇥ Z3.
x �(x)
0 (0, 0)
1 (1, 1)
2 (0, 2)
3 (1, 0)
4 (0, 1)
5 (1, 2)
In this case, im(◆) = Z2 ⇥ Z3.
ker(◆) = 6Z.

Z Z2 ⇥ Z3

Z6

�

⇡ �̂
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5.7. Characteristic of a unital ring, Chinese Remainder Theo-
rem (Sun-Tzu). What are the image and kernel of ◆?
Image: ◆[Z] = n � 1R. This is the prime subring of R.

Kernel: this is less predictable. All we know in general is that this
is an ideal of Z. But every ideal of Z has the form nZ for some unique
non-negative generator n.
This unique non-negative generator for ker(◆) is called the character-
istic of R, denoted char R.

Example 25. Calculate char Z3.
x ◆(x)
�1 [2]
· · · · · ·
0 [0]
1 [1]
2 [2]
3 [0]
4 [1]
5 [2]
· · · · · ·
◆(3) = ◆(1) + ◆(2)
char Z3 = 3
In general, char Zn = n.

Example 26. char R.
x ◆(x)
· · · · · ·
�1 �1.000000 · · ·
0 0.000000 · · ·
1 1.000000 · · ·
2 2.000000 · · ·
3 3.000000 · · ·
4 4.000000 · · ·
5 5.000000 · · ·
· · · · · ·
ker(◆) = 0Z
char R = 0

Now er apply FTH:
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Z R

Z/(charR)Z

◆

⇡ ◆̂

◆̂ is a monomorphism.So if we restrict its codomain to the actual
image, we get an isomorphism:

◆̂Z/(charR)Z! ( prime subring of R)

Corollary 3. Prime subring of Za ⇥ Zb is isomorphic to Zlcm(a,b).

5.8. Chinese Remainder Theorem. Za⇥Zb is isomorphic to Zab i↵
gcd(a, b) = 1.

Proof. Suppose gcd(a, b) = 1
Then lcm(a, b) = ab

gcd(a,b) = ab.
So prime subring is isomorphic to Zab. But subring is all of Za ⇥ Zb.
OTOH, suppose gcd(a, b) > 1. Then the prime subring of Za ⇥ Zb is
Zab/gcd(a, b). So it is a proper subring of Za ⇥ Zb.

⇤

5.9. The Euler Totient Function.

Definition 27. The Euler Totient is the function

� :Z>0 ! Zdefined by

�(n) = |U(Zn)|

Table on small values.

�(1) = |U(Z1) = {0}| = 1

�(2) = |U(Z2) = {1}| = 1

(Look between 1 and n which are coprime to n)
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n �(n)
1 1
2 1
3 2
4 2
5 4
6 2
1 1
7 6
· · · · · ·

�(p) = p� 1

Some better computational mthods:

(1) �(p) = p� 1
(2) �(pk) = p

k � p
k�1

(3) If gcd(a, b) = 1, then �(ab) = �(a)�(b)

Proof.

Zab ' Za ⇥ Zb

|U(Z200)| ' |U(Z8 ⇥ Z25)|
' |U(Z8)|⇥ |U(Z25|

⇤

(4) �(pk11 p
k2
2 · · · pkl

l
) = �(pk11 )�(pk22 ) · · ·�(pkl

l
)

Clever use of Chinese Reminder Theorem:

Z8 ⇥ Z25 ' Z200

|U(Z200)| ' |U(Z8 ⇥ Z25)| ' |U(Z8)|⇥ |U(Z25|
Note: gcd has to be 1.

Example 27. (1) �(7) = 7� 1 = 6
(2) �(30) = �(2)�(3)�(5) = 1 · 2 · 4 = 8

Basic principle: Calculating the totient is easy once you know the
prime factorization of the input.
But finding prime factorizations of really large numbers is really hard,
even for nation-states.
Maybe there is some clever way to compute � without doing prime
factorization? BUT NO!
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5.10. A5 Problems.

Problem 37. Section 18, problems 15.
Unit of Z⇥ Z = (1, 1), (�1, 1), (1,�1), (�1,�1)

Problem 38. Section 18, problems 17.
All non-zero elements of Q are units.

Problem 39. Section 18, problems 18.
(1, q, 1), (1, q,�1), (�1, q, 1), (�1, q, 1). q as problem 17.

Problem 40. Section 18, problems 40.
�(2) = +3||� 3,�(2n) = 3n| � 3n
�(4) = 6||� 6, however, �(2)�(2) = 32 = 9.

Problem 41. Section 19, problems 1.
0, 3, 5, 8, 9, 11

Problem 42. Section 19, problems 2.
3; 16 (Euclidean Algorithm)

Problem 43. Section 19, problems 5.
0

Problem 44. Section 19, problems 7.
0

Problem 45. Section 19, problems 9.
12

Problem 46. Section 19, problems 11.

a
4 + 2a2b2 + b

4

Problem 47. (The Freshman’s Dream) Suppose that R is a commuta-
tive, unital ring of characteristic two, and choose any a, b 2 R. Prove
that (a + b)2 = a

2 + b
2. ”(Please do not reveal this theorem to ac-

tual freshmen, who must work in rings of characteristic zero and who
already have enough trouble squaring binomials correctly.)”

(a+ b)(a+ b) = a
2 + 2ab+ b

2

2ab = 2 · 1 · ab = 0

(a+ b)(a+ b) = a
2 + b

2

Problem 48. (The Freshman’s Dream in general) Generalize the above
exercise as follows: let R be a commutative, unital ring of prime char-
acteristic p, and let a, b 2 R be arbitrary. Prove that (a+ b)p = a

p+ b
p.
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”(Hint: use the Binomial theorem binomial theorem, which is valid in
any commutative ring.)”

(x+ y)p =
pX

k=0

✓
p

k

◆
x
p�k

y
k

✓
p

k

◆
=

p!

k!(p� k)!
=

p · (p� 1)!

k!(p� k)!
p is a prime:

p · (p� 1)!

k!(p� k)!
= p · ( (p� 1)!

k!(p� k)!
)

Except from k = 1, k = p, all (p�1)!
k!(p�k)! 2 Z, p · ( (p�1)!

k!(p�k)!) = 0

k = 1, k = p,

✓
p

k

◆
= 1. (x+ y)p = x

p + y
p

Problem 49. Give an example to show that the Freshman’s Dream
does ”not” hold in composite characteristic.

(x+y)4 = x
4+4x3

y+6x2
y
2+4xy3+y

4 = x
4+4x3

y+4x2
y
2+2x2

y
2+4xy3+y

4

= x
4 + 2x2

y
2 + y

4

Problem 50. Suppose that R is a commutative, unital ring, and that
a 2 R is a unit. Show that a is ”not” a zero-divisor. ”(Hint: suppose
to the contrary that there exists b 6= 0 with ab = 0. What happens if
you multiply this equation by a

�1?)”
Assume a is a zero divisor.

9k 2 R, ak = 0

a
�1
ak = a

�10

1Rk = 0

However,
1Rk = k

proved by contradiction.

Problem 51. Prove that every field is an integral domain.
Field: Every non-zero element is a unit (not zero divisor). Which
means it is an integral domain.

Problem 52. Generalize the above result by showing that any unital
subring of a field is an integral domain. ”(Hint: Suppose that F is a
field and R is a unital subring of F . If R had zero-divisors, then they
would also be zero-divisors in F .)”
Suppose F is a field and R is a unital subring of F .
Assume R is not an integral domain and has zero-divisor, then F will
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have element which is a zero divisor. However, all non-zero elements
should be unit and should not be zero-divisor. All unital subrings com-
bined to be F . F should be an integral domain.

Problem 53. Suppose that D is an integral domain. Show that char(D)
is either zero or a prime. ”(Hint: suppose to the contrary that char(D)
is composite, say char(D) = nm for n,m > 1 and let ◆ be the initial
morphism. What is ◆(n) · ◆(m)?)”
Assume

char(D) = mn

char(D) · 1R = 0

mn · 1R = 0

mn = 0

m,n are zero divisors. D cannot be an integral domain.
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5.11. A6 Problems.

Problem 54. Make a table showing the values of �(n) for n 2 {1, 2, 3, . . . , 20}.
n �(n)
1 0
2 1
3 2
4 2
5 5
6 2
7 6
n (pk11 � p

k1�1
1 ) · (pk22 � p

k2�1
2 ) · · ·

Problem 55. Two students try to calculate �(45) as follows: one says
that �(45) = �(9)�(5) = (32�31)(5�1) = 6⇥4 = 24, and another says
that �(45) = �(3)�(15) = �(3)�(3)�(5) = (3 � 1)(3 � 1)(5 � 1) = 16.
Which one is wrong, and why?
Second one is wrong. (3� 1)(3� 1) is calculating all combinations of 1
and 2, ignoring everything which is relative prime to 2 and 3. Wrong
counting.

Problem 56. The table you constructed above should show that �(15) =
8. Working in Z15, compute the following expressions: 18, 28, 48, 78, 88, 118, 138,
and 148. ”(Hint: there are various tricks that make these computa-
tions easier than they look. For example, when computing powers of
4 you will quickly find that 42 = 16 = 1, from which it follows that
48 = (42)4 = 14 = 1. For another example, when computing powers of
14 it will help to notice that 14 = �1. Using tricks like this, a clever
person can compute all of these expressions with very little work.)”
All 1

Problem 57. Based on the previous problem, try to formulate a con-
jecture regarding the value of the expression a

�(n) in Zn.
1, if gcd(a, n) = 1

Problem 58. Try to prove the conjecture you formulated above. ”(Hint:
Lagrange’s Theorem is very, very helpful.)”
�(n) elements in the cyclic group. g

|G|(=�(n)) = 1

Problem 59. Again working in Z15, compute the expressions 38, 58, 68, 98, 108,
and 128. Do these contradict the conjecture you formulated above?
(If so, then reformulate the conjecture. If your initial conjecture was
wrong, then reformulating it may give you a crucial hint about how to
prove the reformulated conjecture, since any successful proof will need
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to make some use of the additional hypothesis. The process of mathe-
matical discovery often works this way—it is good to learn from one’s
mistakes.)

{3, 6, 9, 12}
{5, 10}

35 = 3, 65 = 6 · · · 38 = 3 · · · 33 = 6, 68 = 6 · 63 = 6. · · ·
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6. Week6

6.1. Definitions. I Private key (in the RSA cryptosystem; i.e. ”The
private key is the ordered pair consisting of...”): The private key is the
ordered pair (N, d)consisting of N = pq and d = e

�1 2 Z�(N), where
gcd(e,�(N)) = 1

I Public key (in the RSA cryptosystem). The public key is the or-
dered pair (N, e)consisting of N = pq and e, where gcd(e,�(N)) = 1

I Formal fraction (from an integral domain D): A formal fraction
from D is a member of D ⇥ (S � {0}).

I Equivalence (of formal fractions): Define a binary relation on
D ⇥ (D � {c}) as follows: (a, b) ⇠ (c, d) () ad == bc.

I Fraction (from an integral domain D): A fraction is a ⇠ equiva-
lence class of formal fraction.

I Frac(D) (the ”field of fractions” of the integral domain D): The
collection of all fractions from D is denoted Frac(D).

6.2. Theorems. F Euler’s Theorem: Suppose a, n are positive inte-
gers with gcd(a, n) = 1. Then

a
�(n) ⌘n 1

F Equality test for fractions:
a

b
=

c

d
() ad = bc
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Last time: Euler totient function:

�(n) = |U(Zn)|
Today: Euler’s Theorem

Intro to cryptosystem

6.3. Euler’s Theorem.

Theorem 19. (Euler)
Suppose a, n are positive integers with gcd(a, n) = 1. Then

a
�(n) ⌘n 1

Proof. First, recall the following corollary of Lagrange’s Theorem: If
G is any finite group, and a 2 G, then a

|G| = e.
Now, because gcd(a, n) = 1, we have [a] 2 U(Zn). So in U(Zn), we
have

[a]�(n) = [1]

[a�(n)] = [1]

so a
�(n) ⌘n 1.

⇤
6.4. Mathematical structure of cryptosystems. Problem: We need
to send a message (plaintext) to a defined list of recipients. No one else
should be able to read the message, even if it is intercepted. So we will
transform it into a ”ciphertext”, which will look like nonsense to ”ad-
versaries”.

Example 28. The Caesar Cipher.
ATTACK THE LEFT FIANK2 ! (Shift everything by 3).
DWWDFN · · ·

(1) Plaintext is ”encoded” as a sequence of elements of some group
G (here G = Z26)

(2) The group G is called the ”site” of the cryptosystem.
(3) There is a key known to the sender but not the adversary (here

k = 3) that is used to define an invertible encryption map
E : G! G (here E(x) = x+ k)
Applying this element by element to plaintext gives ciphertext.

(4) There is another key (here �3) known to the recipient, which
can be used to compute a decryption map D : G ! G, with
D,E inverse function.
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Two types of cryptosystem:

(1) Symmetric. Anyone who knows the encryption key can easily
figure out the decryption key.

(2) Asymmetric (Not symmetric): someone who can encrypt does
not easily know how to decrypt.

Key distribution problem:
In any symmetric system, both parties must possess the key before
communication begins. How did this happen?
WHY DIDN’T THE ADVERSARY INTERCEPT THE KEY?

Unbreakable code during world war 2:
VOTP - actually unbreakable symmetric cipher.
(Fast exponentiation: exp. by repeated squarings.

Lats time: cryptosystems and the key distribution problem.

6.5. RSA Encryption. (1970s, Rivest, Shamir, Adelmann) - Asym-
metric cryptosystem.

a
�(n) ⌘n 1

The players:
Alice - wants to receive secure comms.
Bob - wants to send a message to Alice.
Eve - wants to eavesdrop.
Process:

(1) Key Generation
(2) Encryption
(3) Decryption

(1) RSA key generation (ssh-keygen) - Done by Alice
(a) Alice chooses two very large primes p, q

• unpredictability of p, q is essential to security.
(b) Alice sets N = pq

(c) Alice computes �(N) = �(pq) = (p� 1)(q � 1)
(d) Alice chooses encryption exponent e with gcd(e,�(N)) = 1.
(e) e is a unit of Z�(N). Alice computes d = e

�1 (in the ring
Z�(N)) (d is decryption exponent).
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(f) The pair (N, e) is the public key. Alice broadcasts this to
the world.
The pair (N, d) is the private key. This is kept secret.

(2) Encryption.
(a) Bob ”encodes” his message as an element of ZN . Call this

m (plaintext).
(b) Bob computes c = m

e (in ZN). c is the ciphertext. Bob
transmits c.

(3) Decryption
(a) Alice receives c. She computes:

c
d

We shall show that cd coincides with m.

Proof. in Z�(N), d = e
�1, so:

in Z�(N), [de] = [1]. de ⌘�(N) 1
de� 1 is a multiple of �(N), say

de� 1 = k�(N)

de = 1 + k�(N)

in ZN

c
d = (me)d

= m
de

= m
1+k�(N)

= m · (m�(N))k

= m · 1k

= m( provided that gcd(m,N) = 1)

⇤
(b) If Eve knew d, she could easily decrypt d = e

�1(mod�(N)),
Eve needs �(N) to compute this.
�(N) = (p � 1)(q � 1). Finding phi(N) is equivalent to
factoring N . This is hard.
Note: gcd(m,N) = 1 is guaranteed provided that m <

min(p, q).

Example 29. RSA Example

• Key generation (Alice)

p = 3, q = 5

N = 15
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�(N) = �(15) = 8

Alice choose e 2 U(Z8) = {1, 3, 5, 7}.
e = 7 is choosen. Set d = e

�1(2 Z8) = 7�1 = 7
Public Key: (N, e) = (15m7)
Public Key : (N, d) = (15, 7)

• Encryption (Bob)
Bob wants to send some plaintext m = 8.

c = m
e = 87(inZ15)

87 = 2

• Decryption (Alice):
c = 2

m = c
d = 27 = 128 = 8

endenumerate
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Today: Fractions.

6.6. Field of Fractions of an Integral integral domain. 1st try
at defining fractions:
A fraction is an element of D ⇥D.
Ex: (3, 5) ”represents” 3

5 Problem: (3, 0) represents 3
0

First ”fix:” A fraction is an element of D ⇥ (D � {c}).
Second Problem: (3, 5) represents 3

5 , (6, 10) represents
6
10 .

3
5 = 6

10 , but
(3, 5) 6= (6, 10).

Definition 28. Equivalence of elements of D ⇥ (D � {c})
Define a binary relation on D⇥(D�{c}) as follows: (a, b) ⇠ (c, d) ()
ad == bc.

Theorem 20. ⇠ is an equivalence relation.

Proof. (a, b) ⇠ (a, b) because ab = ba.
Suppose ((a, b) ⇠ (c, d), then

ad = bc

bc = ad

cb = da

(c, d) ⇠ (a, b)

Transtivity: Suppose (a, b) ⇠ (c, d) and (c, d) ⇠ (e, f)

ad = bc

cf = de

afcd = bcde

afcd = becd and d 6= 0

So afc = bec (because we’re in an integral domain)
Case 1: c 6= 0. Then we cancel it and get af = be and we’re done.
Case 2: c = 0, then ad = 0 and de = 0. So a = 0 and e = 0. Thus
af = 0 and be = 0, so af = be.

⇤
Definition 29. Actual Definitions of formal fraction and frac-

tion

A formal fraction from D is a member of D ⇥ (S � {0}).
A fraction is a ⇠ equivalence class of formal fraction.

Example 30. The formal fractions (3, 5) and (6, 10) are not equal.
However, the fractions [(3, 50] and [(6, 10)] are equal. (3, 5) ⇠ (6, 10)
because 3 · 10 = 5 · 6.
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Notation: the fraction[(a, b)] is usually denoted a

b
. Thus 3

5 = 6
10 .

Definition 30. Equality test for Fractions

a

b
=

c

d
() ad = bc

The collection of all fractions from D is denoted Frac(D).

Example 31. Frac(Z) = Q.

Operations on Frac(D):
a

b

c

d
= ac

bd
(bd 6= 0 because b 6= 0 and d 6= 0 and D is an integral

domain)
a

b
+ c

d
= ad+bc

bd

These turn out to be well-defined. They turn Frac(D) into a ring.
In fact Frac(D) is a field.
The zero element of Frac(D) is 0D

1D
: a

b
+ 0

1 = a·1+b·0
b·1 = a

b

Unity is 1D
1D

:a
b
· 1
1 = a·1

b·1 = a

b
.

Inverse of a

b
is b

a
, a

b
· b

a
= ab

ab
= 1

1
Problem: maybe a = 0, then
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6.7. Problems.

Problem 60. Section 20, problems 5: Use Fermat’s theorem to find
the remainder of 3749 when it is divided by 7.

376 = 1 mod 7

3748 = 18 = 1 mod 7

3749 = 1 ⇤ 37 = 2 mod 7

Problem 61. Section 20, problems 10: Use Euler’s generalization of
Fermat’s theorem to find the remainder of 71000 when divided by 24.

�(24) = (23 � 22)⇥ (3� 1)

= 4⇥ 2 = 8

78 = 1 mod 24

71000 = 1125 = 1 mod 24

Problem 62. Taking p = 5 and q = 7, generate a public/private key-
pair for the RSA cryptosystem. (Hint: start by choosing an encryption
exponent e which is relatively prime to �(35) = 24. If you have trouble
generating the corresponding decryption exponent, use e = 5, which is
easy to invert modulo 24 by inspection.

�(35) = 4⇥ 6 = 24

e 2 {1, 5, 7, 11, 13, 17, 19, 23}
choose e = 11

m
24 = 1 mod 35

m
ed = m mod 35

ed = 24 · k + 1

11 · d = 24 · k + 1

d = 15

(11, 35); (11, 35)

(Euclidean Algorithm for calculating inverse)

Problem 63. Using the public key generated above, encrypt the ”mes-
sage” m = 3.

34 = 11 mod 35

38 = 16 mod 35

311 = 12 mod 35
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Problem 64. Using the private key generated above, decrypt the ”ci-
phertext” c generated by the previous problem.

122 = 4 mod 35

1210 = 1024 = 9 mod 35

1211 = 108 = 3 mod 35

Problem 65. You have undoubtedly noticed that your public and pri-
vate keys are identical, which is undesirable in an allegedly asymmetric
cryptosystem. In fact, for these particular choices of p and q, the two
keys will be identical regardless of which encryption exponent is cho-
sen. Try to explain why. ”(Hint: investigate the structure of the group
U(Z24) using the Chinese Remainder Theorem.)”

U(Z24) = U(Z3 ⇥ Z8) = U(Z3)⇥ U(Z8)

U(Z3).U(Z8) are self-inverse.

Problem 66. Repeat the previous exercises with slightly larger choices
of p and q until you find a keypair in which the keys are distinct. (You
may wish to use a machine to help with the arithmetic.)

p = 23, q = 17

N = 391,�(N) = 352

Public Key = (391, 7); Private Key = (391, 151)
Using Prime.java

Generating primes:
Sieve of Eratostheres

Problem 67. Let D denote the ring of real-valued polynomial func-
tions. (We will see next week that this is an integral domain; for pur-
poses of this problem you may take that fact for granted.) Write down
some fractions from D. What did you call objects of this type when you
were in high school?

x
2 + 2x+ 1

x2 � 1

Problem 68. With D as above, prove that the fractions x
2�1

x2�2x+1 and
x+1
x�1 are equal.

(x2 � 1, x2 � x+ 1), (x+ 1, x� 1)
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Using the equality test:

(x2 � 1)(x+ 1) = x
3 � x

2 � x+ 1

(x2 � 2x+ 1)(x+ 1) = x
3 + x

2 � 2x2 � 2x+ x+ 1 = x
3 � x

2 � x+ 1

(x2 � 1)(x+ 1) = (x2 � 2x+ 1)(x+ 1)

x
2 � 1

x2 � 2x+ 1
=

x+ 1

x� 1

Problem 69. Suppose that D is any integral domain and that a, b, c 2
D with a 6= 0 and b 6= 0. Prove the ”’cancellation property of frac-
tions,”’ that ab

ac
= b

c
.

Problem 70. Suppose that D is any integral domain and that a, b, c 2
D with b 6= 0 and a a unit. Prove that ab

c
= b

a�1c
and that b

ac
= a

�1
b

c
.

abc = acb

Problem 71. ”’(Addition with a common denominator)”’ Starting
from the definition of addition in Frac(D), show that a

c
+ b

c
= a+b

c
.

ac+ bc

c · c
(ac+ bc) · c = ac · c+ bc · c
c · c · (a+ b) = ac · c+ bc · c
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7. Week7

7.1. Definitions. I Formal fraction (from an integral domain D): A
formal fraction from D is a member of D ⇥ (S � {0}).

I Equivalence (of formal fractions):Define a binary relation on D⇥
(D � {c}) as follows: (a, b) ⇠ (c, d) () ad == bc.

I Fraction (from an integral domain D): A fraction is a ⇠ equiva-
lence class of formal fraction.

I Addition (of fractions):a
b
+ c

d
= ad+bc

bd

I Multiplication (of fractions): a

b

c

d
= ac

bd
(bd 6= 0 because b 6= 0 and

d 6= 0 and D is an integral domain)

I Frac(D) (the ”field of fractions” of the integral domain D): The
collection of all fractions from D is denoted Frac(D).

I Canonical injection (of an integral domain D into its field of frac-
tions): Define a map ◆ : D ! Frac(D) by the formula

◆(a) =
a

1D
I Polynomial function (from a ring R into itself): Any funtion

f : R ! R of the form f(x) = anx
n + an�1x

n�1 + · · · + a1x + a0

for some fixed constans a0, a1 · · · an and some non-negative integer n.

I Polynomial expression (with coe�cients in a ring R): Let R be
any commutative unital ring. A polynomial expression with coe↵’s in
R is a sequence (a0, a1 · · · ) of elements of R, which has only finitely
many non-zero entries.

IAddition (of polynomial expressions): (a0, a1, a2, · · · )+(b0, b1, b2, · · · )
= (a0 + b0, a1 + b1, a2 + b2, · · · )

I Multiplication (of polynomial expressions):

(a0, a1, a2) · (b0, b1, b2, · · · )

= (c0, c1, c2 · · · )

ck =
kX

i=0

aibk�1 =
X

i+j=k

aibj
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I R[x] (the ”ring of polynomial expressions, with coe�cients in R,
in the indeterminate x,” or ”R adjoin x” for short): R[x] means the
set of polynomial expressions w/ coe↵’s in R. ”R adjoin x”

R[x] = {(a0, a1, a2 · · · )|ai 2 R and only finitely many ai 6= 0}
We could have written (1, 1, 2, 0, 0, · · · ) = 1 + y + 2y2

7.2. Theorems. F Equality test for fractions:
a

b
=

c

d
() ad = bc

F Universal mapping property of Frac(D): Frac(D) is a field into
which D can be injected. It is in fact the samllest such field, in the
following sense: Suppose � : D ! F is any monomorphism into any
field F . Then 9! monomorphism �̂ : Frac(D) ! F making �̂ � ◆ = �.
(� has to be unital).

F Example of two distinct polynomial expressions that give rise to
the same polynomial function:
Take R = Z3

Define f(x) = x
3 + 1 = (1, 1, 0, 0, 0, 0, · · · )

x f(x)
0 1
1 2
2 0

R = Z3

g(x) = x+ 1 = (1, 0, 0, 1, 0, 0, · · · )
x g(x)
0 1
1 2
2 0
Notice that f = g over Z3, x3 + 1 and x + 1 are the same polynomial
over Z3.
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Last time: Frac(D), field of fractions of D. (Frac(Z) = Q).
This time: Is D a subset of Frac(D)? No. An element of Frac(D)

is an equivalence class of pairs of elements of D. But we will now show
that D is isomorphic to a certain subring of Frac(D).

7.3. The canonical injection.

Definition 31. Define a map ◆ : D ! Frac(D) by the formula

◆(a) =
a

1D

Claim: ◆ is always a unital monomorphism.

Proof.

◆(a+ b) =
a+ b

1

◆(a) + ◆(b) =
a

1
+

b

1
=

a+ b

1

◆(ab) =
ab

1

◆(a) · ◆(b) = a

1

b

1
=

ab

1

a 2 ker(◆) () ◆(a) = 0
1 ()

a

1 = 0
1

() a · 1 = 1 · 0 () a = 0.
So ker(◆) = {0} and ◆ is one-to-one.
Thus, ◆ : D ! Frac(D) might not be an isomorphism because it might
not be surjective. But if we restrict the codomain to the actual image,
it becomes an isomorphism from D to im(◆).
So im(◆) is a ”copy” of D inside Frac(D).
(double b; int n = (int) b)

So: the integer 5 is not literally the same object as 5
1 . But {

n

1 |n 2 Z}
is a ”copy of Z inside Q.

⇤

What if D was already a field? What will Frac(D) look like?
In this canse Frac(D) will be isomorphic to D.

Proof. im(D) = {a

1 |a 2 D}. But any fraction a

b
= ab

�1

1 , so im(◆) is all
of Frac(D). ⇤
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7.4. The universal mapping property and concrete models of
Frac(D). Claim: Frac(D) is a field into which D can be injected. It is
in fact the samllest such field, in the following sense: Suppose � : D !
F is any monomorphism into any field F . Then 9! monomorphism
�̂ : Frac(D)! F making �̂ � ◆ = �. (� has to be unital).

(Graph)

Proof. Suppose �̂ is such a monomorphism. Then

�̂(
a

1
) = �̂(◆(a))

= (�̂ � ◆)(a)
= �(a)

�̂(
b

1
· 1
b
) = �̂(

1

1
) = �(1) = 1F

�̂(
b

1
�̂(

1

b
) = 1F

�(b) · �̂(1
b
= 1F ) �̂(

1

b
) = (�(b))�1

�̂(
a

b
) = �̂(

a

1
)�̂(

1

b
)

= �(a)(�(b))�1

Existence: Define �̂(a
b
) = �(a)�(b).

⇤
Example 32.

What us im(�̂) in this case?
Answer: The set of real numbers whose decimal expansion is eventually
periodic.
68135, 214312121212121212121 · · ·

Example 33. D = {a+ b
p
2|a, b 2 Z}

D is a subring of R:
(2 + 3

p
2) + (3�

p
2) = (5 + 2

p
2)

(2 + 3
p
2)(3�

p
2) = 69

p
2� 2

p
2� 6

= 0 + 7
p
2

So D is an integral domain.
What does Frac(D) look like?

{a+b
p
2

c+d
p
2
|a, b, c, d 2 Z and either c 6= 0 or d 6= 0}
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7+
p
2

6+5
p
2
· 1+

p
2

0+
p
2
=

Last time: Universal mapping prop of Frac(D): im(�̂)

7.5. Polynomials.

Example 34. Example: f(x) = x
2 + 1

Non-Example:
g(x) = 1

x
= x

�1

h(x) = sin(x)

Correct H.S. definition of ”polynomial”:

Definition 32. polynomial Any funtion f : R ! R of the form
f(x) = anx

n + an�1x
n�1 + · · · + a1x + a0 for some fixed constans

a0, a1 · · · an and some non-negative integer n.

First attempt at generalization: let R be any commutative unital
ring. A polynomial function on R is a function f : R! R of the form
f(x) = anx

n + · · · a1x+ a0, (a0, a1 · · · 2 R).

Example 35. Take R = Z3

Define f(x) = x
3 + 1

x f(x)
0 1
1 2
2 0

Example 36. R = Z3

g(x) = x+ 1
x g(x)
0 1
1 2
2 0

Notice that f = g over Z3, x3+1 and x+1 are the same polynomial
over Z3.
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Next we will define polynomial expression, so that f and g (from
prev.) have unequal expressions even though they define the same
function.

Definition 33. Let R be any commutative unital ring. A polynomial
expression with coe↵ ’s in R is a sequence (a0, a1 · · · ) of elements of R,
which has only finitely many non-zero entries.

Example 37. f(x) = 5x3+2x�1 ”encode” this as (�1, 2, 0, 5, 0, 0, 0 · · · )

Notation: Instead of writing f = (a0, a1, a2 · · · ), we write f = a0 +
a1x+ a2x

2 + · · ·
Question: over Z3, are the polynomial expressions

f(x) = x
3 = +1

g(x) = x+ 1

equal? No: f = (1, 0, 0, 1, 0, 0, · · · ); g = (1, 1, 0, 0, 0, 0, · · · ).

Notation: R[x] means the set of polynomial expressions w/ coe↵’s
in R. ”R adjoin x”
We could have written (1, 1, 2, 0, 0, · · · ) = 1 + y + 2y2

In this case we would denoted the set of polynomials as R[y].
Binary operations on R[x]:
(a0, a1, a2, · · · ) + (b0, b1, b2, · · · )
= (a0 + b0, a1 + b1, a2 + b2, · · · )

Example 38.
f(x) = 3 + 4x� 5x2

g = 2 + 3x+ 0x2

f + g = 5 + 7x� 5x2

0x2 is ”zero-pudding”

Multiplication of polynomials:
(a0 + a1x+ · · ·+ anx

n)(b0 + b1x = · · ·+ bnx
n)

= a0b0 + (a0b1 + a1b0)x+ (a0b2 + a1b1 + a2b0)x2 + (a0b3 + a1b2 + a2b1 +
a3b0)x3 + · · ·

Definition 34. True Definition of Multiplication:

(a0, a1, a2) · (b0, b1, b2, · · · )
= (c0, c1, c2 · · · )

ck =
kX

i=0

aibk�1 =
X

i+j=k

aibj
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Theorem 21. With these operations, R[x] is again a commutative,
unital ring.

0R[x] = 0 + 0x+ · · ·

1R[x] = 1 + 0x+ · · ·

7.6. Problems.

Problem 72. Section 21, problems 1
Describe the field F of quotients of the integral subdomain

D = {n+mi|n,m 2 Z}

of C. “Describe” means give the elements of C that make up the field
of quotients of D in C. (The elements of D are the Gaussian integers.)

Problem 73. Section 21, problems 2
Describe (in the sense of Exercise 1) the field F of quotients of the
integral subdomain D = {n+m

p
2|n,m 2 Z} of R.

Problem 74. f(x) = 4x� 5, g(x) = 2x2 � 4x+ 2 2 Z8[x].

f(x) + g(x) = 2x2 � 3 = 2x2 + 5

f(x)g(x) = �26x2 + 28x� 10 = 6x2 + 4x+ 6

Problem 75. How many polynomials are there of degree  3 in Z2[x]?
(Include 0.)
2 · 2 · 2 = 8

Problem 76. How many polynomials are there of degree  2 in Z5[x]?
(Include 0.)
5 · 5 = 25

Problem 77. (Rational expressions). Next week we shall prove that
whenever D is an integral domain, so is D[x]. For purposes of this ex-
ercise, you may take this fact for granted. Thus, the field of fractions
of D[x] is a well-defined object, which is usually denoted D(x). Write
down two ”random” elements of the field R(x), and show how to add
them, and also how to multiply them.

1.5x2 + 3

x+ 1
;
2x3 � 3.7x+ 1

x2 � 1

Problem 78. (An infinite ring with positive characteristic). Let R =
Z3[x] denote the ring of polynomial expressions with coe�cients in Z3.
Write the table of values of the initial morphism ◆ : Z! R, and show
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that char(R) = 3.
x ◆

0 0.000000
1 1.000000
2 2.000000

char(R) = 0 = 3

Problem 79. Let R be as in the previous exercise. Show that R is
an infinite ring, even though it has characteristic three and its prime
subring is thus a copy of Z3.

Problem 80. Let R be as in the previous exercise and put F = Frac(R).
(We will show next week that R is an integral domain; for purposes of
this problem you may take this for granted.) Show that F is an infinite
field of positive characteristic.
(

Z3[x]

has characteristic 3:
x ◆

0 0

1
1 = 0x +
· · ·

2
2 + 0x +
· · ·

3 0 · · ·
4 1c . . .
But Z3[x] is an infinite ring: 1, x, x2

, x
3
, · · · are all distinct.)

In F = Frac(Z3[x])



MATH361 NOTES 81

8. Week8

8.1. Definitions. I Degree (of a polynomial; please be sure to include
the case of the zero polynomial): Suppose f = a0 + a1x+ · · ·+ anx

n 2
R[x]. If f 6= 0, then deg(f) means the largest i such that ai 6= 0. By
convention, deg(0) = �1

Example 39.
f = 3x� 4x3 + 25x4 � x

7 + 0x

deg(f) = 7

I Constant polynomial: A constant polynomial is a polynomial of
degree  0.

I Divisibility relation on polynomials: in D[x], f |g () 9h 2 D[x]
with g = fh

I f % g: Given f, g 2 F [x], g 6= 0, define f%g to be the remainder
when f , is divided by g.
So: g|f () f%g = 0

8.2. Theorems. FDegree bounds on sum and product (general form).

deg(f + g)  max(deg(f), def(g))

deg(fg)  deg(f) + deg(g)

F Formula for deg(fg) when R is an integral domain.

deg(fg) = deg(f) + deg(g) > 0

F Theorem concerning zero-divisors in D[x] when D is an integral
domain (i.e. ”If D is an integral domain then so is...”): If D is an
integral domain, then so isD[x].

F Theorem on polynomial long division:
Suppose D is an integral domainm and that f, g 2 D[x], such that

(1) g 6= 0
(2) The leading coe�cient of g is a unit of D.

Then 9!q, r 2 D[x] such that

(1) f = gq + r
(2) deg r < deg g

F Divisibility test for polynomials with coe�cients in a field: f, g 2
F [x], g 6= 0. Let q, r be as in long division. Then (g|f () r = 0)
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Last time: polynomial functions and polynomial expressions. (Dif-
ferent expressions many define the same function,
e.g. in Z3[x], x + 1 and x

3 + 1 define the same function even though
they are distinct expressions.)
R[x] is the ring of polynomial expressions.

Today:

8.3. The Degree of a Polynomial.

Definition 35. Suppose f = a0 + a1x + · · · + anx
n 2 R[x]. If f 6= 0,

then deg(f) means the largest i such that ai 6= 0. By convention,
deg(0) = �1

Example 40.
f = 3x� 4x3 + 25x4 � x

7 + 0x

deg(f) = 7

Definition 36. Constant Polynomial

A constant polynomial is a polynomial of degree  0

Theorem 22. degree bounds on sum and product:

deg(f + g)  max(deg(f), def(g))

deg(fg)  deg(f) + deg(g)

(example)

Example 41. In Z6[x]
f = 1 + 2x

g = 1 + 3x2

fg = 1 + 2x+ 3x2

deg(fg) = 2

Sketch of proof:

f = a0 + a1 + · · ·+ anx
n

g = b0 + b1 + · · ·+ bnx
n

(May have zero pudded, but can assume that one of them has degree
n)
max(deg(f), deg(g)) = n

f + g = (a0 + b0) + · · ·+ (an + bn)x
n

deg(f + g)  0
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fg = a0b0 + · · ·+ (anbm)x
n+m

(Here f, g, have no zero-pudding)
(What if, say f = 0? fg = 0, deg(fg) = �1; deg(f) = �1, deg(g) =
m, deg(f) + deg(g) = �1+m.)

Better version for nice coe�cient rings:
IfD is an integral domain, then for any f, g 2 D[x], deg(fg) = deg(f)+
deg(g)

If either f or g is zero, then deg(fg) = �1 and deg(f) + deg(g) =
�1

fg = a0b0 + · · ·+ adegbdegx
degf+degg

Corollary 4. If D is an integral domain, then so is D[x].

Proof. D[x] is commutative, unital (unity is 1 + 0x+ · · · , not the zero
ring. Suppose f 6= 0, g 6= 0,
Then deg(f) � 0
deg(g) � 0
deg(fg) = deg(f) + deg(g) � 0 so fg 6= 0 ⇤

Warning: If R is not a domain then neither is R[x].
ex: in Z6[x], (2x)(3x5) = 0x6.

{an}1n=1, an =
1

n� 1

8.4. Polynomial Long Division. Calculus problem:
Z

2x3 + 5x� 1

3x+ 2
dx

Preparation:

(2x3 + 5x� 1/(3x+ 2) =
2

3
x
2 � 4

9
x+

53

27
...� 133

27

2x3 + 5x� 1

3x+ 2
=

2

3
x
2 � 4

9
x+

53

27
� 133/27

3x+ 2
f

g
= q +

r

g

f = gq + r (here r is 133/27)

(deg(r) < deg(g)) (terminate condition of the algorithm
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8.5. Abstract Version (Theorem on Polynomial long division):
Suppose D is an integral domainm and that f, g 2 D[x], such that

(1) g 6= 0
(2) The leading coe�cient of g is a unit of D.

Then 9!q, r 2 D[x] such that

(1) f = gq + r
(2) deg r < deg g

Proof. (Uniqueness)
Suppose q1, r1 and q2, r2 both satisfy condition (1) and (2)

f = gq1 + r1

f = gq2 + r2

gq1 + r1 = gq2 + r2

Now, deg(r2 � r1) < deg(g). So, deg(g(q1 � q2)) < deg(g).
deg(fg) = deg(f) + deg(g) for integral domain. (deg(fg)  (deg(f) +
deg(g)) if not)

deg(g) + deg(q1 � q2) < deg(g)

deg(q1 � q2) < 0

Therefore, q1 � q2 = 0
q1 == q2

Also, g · 0 = r2 � r1, so, r1 = r2

(Existence)
Proof by Algorithm.
Given f, g, set q1 = 0, r1 = f

Let LT, LC, denote ”leading term” and ”leading coe�cient” respec-
tively. Definitely

gq1 + r1 = g(0) + f = f

(r1 is the original f)
If deg(r1)deg(g), then terminate the algorithm. Otherwise, LT (r1)

LT (g) is a

polynomial in D[x].
Now set q2 = q1 +

LT (r1)
LT (g) and set r2 = r1 � g

LT (r1)
LT (g) . Note:

gq2 + r2 = g(q1 +
LT (r1)
LT (g) ) + r1 � g

LT (r1)
LT (g)

= gq1 + r1 = f

Also, deg(r2) < deg(r1) Nex, if deg(r2) < deg(g), we are done. Oth-
erwise, repeat. Eventually, we will achieve deg(r) < deg(g), then we
stop.

⇤
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Last Time: Polynomial Long Division
In D[x] if f, g 2 D[x] with g 6= 0 and LC(g) is a unit of D, 9!q, r 2 D[x]
with

(1) f = gq + r

(2) deg(r) < deg(g)

8.6. Divisibility test for Polynomials.

Example 42.

(x+ 2)|(x2 � x� 6)

(x2 � x� 6) 6 |(x+ 2)

def(f) = def(g) + deg(q) so def(f) � deg(g) unless f = 0

Let F be a field. Then F [x] is an integral domain. (F [x] is never a
field because x has no inverse: x�1 is not a polynomial)

In F [x], we say that g|f (g divides f, or f is a multiple of g) if
9q 2 F [x] with f = gq.

Theorem 23. (Divisibility test for polynomials)
f, g 2 F [x], g 6= 0. Let q, r be as in long division. Then (g|f () r =
0)

Proof. Suppose g|f . Then by definition, f = gq for some q 2 F [x],=
gq + 0
This shows that q is actually the quotient coming from division algo-
rithm, and r = 0
OTOH, suppose r = 0. Then f = gq + r = gq, so g|f.

⇤

Example 43.

(2x+ 1)|(x2 + 3x+ 4)

Example 44.

(2x+ 1)|(x2 + 3x)

Notation: Given f, g 2 F [x], g 6= 0, define f%g to be the remainder
when f , is divided by g.
So: g|f () f%g = 0
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8.7. Ideals of F [x]. Recall: An ideal in a ring is a subring that ab-
sorbs products.

Ra = {ra|r 2 R}
is the principal ideal generated by a.
Note F [x]f is pretty awkward notation, so we will now call this object
hfi (set of all polynomial multiples of f).

Example 45. in R[x], hx+ 1i = {x+ 1, 2x+ 2, ⇡x = ⇡, x
2 � 1, · · · }

Theorem 24. Every ideal of F [x] is principal, ie. of the form hfi for
some fixed f .

Proof. Let I ✓ F [x] be any ideal. I is a set (bucket) pf polynomials. ⇤
�1 deg 0 deg 1 deg 2 deg 3 · · ·
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8.8. Probelms.

Problem 81. Section 23, problems 1.

f(x) = x
6 + 3x5 + 4x2 � 3x+ 2, g(x) = x

2 + 2x� 3,2 Z7[x].

q = (x4 + x
3 + x

2 + x+ 5)

r = 4x+ 3

Problem 82. Section 23, problems 2.

f(x) = x
6 + 3x5 + 4x2 � 3x+ 2, g(x) = 3x2 + 2x� 3,2 Z7[x].

q = 5x4 + 5x2 � x

r = x+ 2

Problem 83. Section 23, problems 3.

f(x) = x
5 � 2x4 + 3x� 5, g(x) = 2x+ 1,2 Z11[x].

q = 6x4 + 7x3 + 2x2 � x+ 2

r = 4

Problem 84. Section 23, problems 4.

Problem 85. Working in Q[x], find the remainder when f(x) = x
2 +

x� 3 is divided by x� 5. Then compute f(5).

x
2 + x� 3 = (x� 5)(x+ 6) + 27

f(5) = 27

Problem 86. Working in Z7[x], find the remainder when f(x) = x
3+

4x+ 1 is divided by x� 2. Then compute f(2).

x
3 + 4x+ 1 = (x� 2)(x2 + 2x+ 1) + 3

f(2) = 3

Problem 87. Using the theorem on polynomial long division, prove
the conjecture suggested by the last two exercises.

f = gq + r

let x = k, such that g(x) = 0, then f(x) = 0 · q + r = r

Problem 88. Prove the ”Factor Theorem:” if F is any field, and
f 2 F [x] is any polynomial with coe�cients in F , then f(a) = 0 if and
only if x� a is a factor of f (i.e. f is a multiple of x� a).
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Proof. if (x� a) is a factor, then f(x) = (x� a)q, f(a) = (a� a)q = 0.

Assume f(a) = 0, (x�a) is not a factor. Then f(x) = (x�a)q+r, r 6=
0. Then f(a) = 0 = (a� a)q + r = 0 + r = r, r = 0, contradicts r 6= 0.
Proved by contradiction.

⇤
Problem 89. A ”root” of a polynomial f 2 F [x] is an element a 2 F

such that f(a) = 0. Prove that a polynomial of degree n has at most n
roots. ”(Hint: begin by assuming that the roots of f are a1, . . . , ar and
then prove that deg(f) � r.)”

According to the previous problem, f(a) = 0 if and only if (x � a)
is a factor of f . Now assume f has degree k and has k + 1 solutions.
Then f(x) = (x� a1)(x� a2)(x� a3) · · · (x� ak+1), multiply all k + 1
terms, the term in the solution with the highest degree will be x

k+1, f
has degree k + 1.
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9. Week9

9.1. Definitions. .
I Standard representative (of an element of F[x]/ hmi); i.e. the
representative whose uniqueness is guaranteed by the theorem concern-
ing unique representation below): Standard representative of f + hmi
is the unique g with f + hmi = g+ hmi and deg(g) < deg(m), turns to
be f%m..

I Standard generator (of F[x]/ hmi); usually this is denoted by
↵): ↵ = x+ hmi

9.2. Theorems. .
F Theorem concerning unique representation of elements of
F[x]/ hmi:Standard representative of f + hmi is the unique g with
f+hmi = g+hmi and deg(g) < deg(m), turns to be f%m, g is unique.

F Theorem concerning m(↵) (where ↵ is the standard gen-
erator of F [x]/ hmi): m(↵) = 0.

9.3. Describe the Following Procedures. .
? Procedure to calculate the standard representation of the
product (f + hmi)(g + hmi) (i.e. the ”machine implementation” of
multiplication in F [x]/ hmi): (f + hmi)(g + hmi) = ((fg)%m) + hmi

? Procedure to rewrite ”high” powers of the standard gen-
erator ↵ in terms of lower powers, using the theorem con-
cerning m(↵) (i.e. the ”human implementation” of multiplication in
F [x]/ hmi)):

m = a0 + a1x+ · · ·+ ad�1x
d�1 + adx

d

a0 + a1↵ + · · ·+ ad�1↵
d�1 + ad↵

d = 0

↵
d = �a�1

d
[a0 + a1↵ + ad�1↵

d�1]
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Last time: Every ideal of F [x] is principal, ie, generated by one ele-
ment.
I ✓ F [x] is a ”bucket” of polynomials.
(All)
�1 0 1 2 3 · · ·

If 3, then anything after 3.

Proof. Let I ✓ F [x] be any ideal, if I = {0} then I = h0i. Otherwise,
let d be the least non-negative integer such that I contains elements of
degree d, choose any g 2 I with deg(g) = d.

We will prove that I = hgi (the set of multiples of g.

First, hgi ✓ I, because any multiple of g has the form hg and g 2 I

and I absorbds products, So hg 2 I.
On the other hand, choose any f 2 I

Put r = f%g. Also let q be the quotient. Then

f = gq + r

and deg(r) < deg(g)
r = f � gq

f 2 I, g 2 I(gq 2 I, herefore, r 2 I.
This forces deg(r) = �1, so r = 0, so f is a multiple of g, so f 2 hgi.
Every ideal is a principle. ⇤

9.4. Quotients of F[x]. .

Example 46.
R[x]/

⌦
x
2 + 1

↵

Elements are cosets of the form f + hx2 + 1i ( f is a polynomial).

Equality test:

f +
⌦
x
2 + 1

↵
= g +

⌦
x
2 + 1

↵

i↵
f � f 2

⌦
x
2 + 1

↵

i↵ g � f is a multiple of x2 + 1
i↵

(g � f)%(x2 + 1) = 0
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Example 47. Example of quality test

3x2 +
⌦
x
2 + 1

↵
? = 7x+

⌦
x
2 + 1

↵

(3x2 � 7x)%(x2 + 1) = �7x+ 3 6= 0

Example 48. Example of quality test

x
2 +

⌦
x
2 + 1

↵
? = �1 +

⌦
x
2 + 1

↵

(x2 + 1)%(x2 + 1) = 0

Notation:
↵ = x+

⌦
x
2 + 1

↵

↵
2 = (x+

⌦
x
2 + 1

↵
)(x+

⌦
x
2 + 1

↵
)

= x
2 +

⌦
x
2 + 1

↵

= �1 +
⌦
x
2 + 1

↵

1R[x]/hx2+1i = 1 +
⌦
x
2 + 1

↵

�1R[x]/hx2+1i = �1 +
⌦
x
2 + 1

↵

Punch line:
↵
2 = �1(2 R[x]/

⌦
x
2 + 1

↵
)

Definition 37.
R[x]/

⌦
x
2 + 1

↵
= C

and
x+

⌦
x
2 + 1

↵
= i

More calculations in C:
3x2 + 5 +

⌦
x
2 + 1

↵

Simplified:
(3x2 + 5)/(x2 + 1) = 3, r = 2

(3x2 + 5) +
⌦
x
2 + 1

↵
= 2 +

⌦
x
2 + 1

↵
(r = 0)

In general, suppose F is a field and m 6= 0 is a non-zero element of
F [x], and form the quotient ring F [x]/ hmi. Any element of this ring
has the form f + hmi.

Claim:
f + hmi = (f%m) + hmi



92 JINGWEN FENG

Proof.
f = mq + (f%m)

f � (f%m) = mq 2 hmi
(Di↵erence of them lies inside the ideal, passes the equality test. ⇤
9.5. General Picture of F[x]/ hmi.

(1) Each element of this ring can be expressed in one and only one
way in the form

f + hmi
with deg(f) < deg(m).

Proof. Any element of F [x]/ hmi has the form f + hmi. But
f + hmi = (f%m) + hmi

(f%m has degree < deg(m)).

Uniqueness: Suppose f1 + hmi = f2 + hmi with deg(f1) <

deg(m) and deg(f2) < deg(m).

f1 � f2 2 hmi
f1 � f2 = mq

f1 � f2 +mq

if q 6= 0, deg(mq) � deg(m). Then we have a contradiction
because deg(f2) is too low to cancel LT (mq), forcing deg(f2) �
deg(m). So q = 0 and f1 � f2 = 0, f1 = f2.

⇤
(2) Addition:

(f1 + hmi) + (f2 hmi) = (f1 = f2) + hmi
(3) Multiplication:

(f1 + hmi)(f2 + hmi) = f1f2 + hmi
= ((f1f2)%m) + hmi

C = R[x]/ hx2 + 1i
Each element is written uniquely in the formm f+hx2 + 1i, deg(f) < 2.

f +
⌦
x
2 + 1

↵
= (a+ bx+

⌦
x
2 + 1

↵
, a, b 2 R

a+ bi = (a+
⌦
x
2 + 1

↵
) + (b+

⌦
x
2 + 1

↵
)(x+

⌦
x
2 + 1

↵
)

= (a+ bx) +
⌦
x
2 + 1

↵

each element of C is uniquely of the form a+ bi(a, b 2 R)
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Last time: The ring F [x]/ hmi. Ex: R[x]/ hx2 + 1i = C

Example 49. Z2[x]/ hx2 + x+ 1i (Z2 is a field)

F [x]/ hmi = {f + hmi |deg(f) < deg(m)}

Z2[x]/
⌦
x
2 + x+ 1

↵
= {f +

⌦
x
2 ++x1

↵
|deg(f) < 2  1}

a+ bx+
⌦
x
2 + x+ 1

↵
|a, b 2 Z2}

{0+
⌦
x
2 + x+ 1

↵
, 1+

⌦
x
2 + x+ 1

↵
, x+

⌦
x
2 + x+ 1

↵
, x+1+

⌦
x
2 + x+ 1

↵
}

0 +
⌦
x
2 + x+ 1

↵
⌘ 0

1 +
⌦
x
2 + x+ 1

↵
⌘ 1

x+
⌦
x
2 + x+ 1

↵
⌘ ↵

1 + x+
⌦
x
2 + x+ 1

↵
= 1 + ↵

Z2[x]/
⌦
x
2 + x+ 1

↵
= {0, 1,↵, 1 + ↵}

+ 0 1 ↵ 1 + ↵

0 0 1 ↵ 1+ ↵

1 1 0 1+ ↵ ↵

↵ ↵ 1+ ↵ 0 1
1 + ↵ 1+ ↵ ↵ 1 0

· 0 1 ↵ 1 + ↵

0 0 0 0 0
1 0 1 ↵ 1+ ↵

↵ 0 ↵ 1 + ↵ 1
1 + ↵ 0 1 + ↵ 1 ↵

↵
2 = (x+

⌦
x
2 + x+ 1

↵
)(x+

⌦
x
2 + x+ 1

↵
) = x

2+
⌦
x
2 + x+ 1

↵
= (1+x)+

⌦
x
2 + x+ 1

↵

(x2)/(x2 + x+ 1), r = 1 + x

Units of Z2/ hx2 + x+ 1i: {1,↵, 1 + ↵}
This is a field. Everything except from 0 is a unit. This field has a
name. It’s called GF (4), Galois field.

Initial Morphism into GF(4) (From Z to GF (4))



94 JINGWEN FENG

x ◆(x)
0 0
1 1
2 0
3 1
4 0
· · · · · ·

Z! GF (4); Char(GF (4)) = 2

+ 0 1 ↵ 1 + ↵

0 0 1 ↵ 1+ ↵

1 1 0 1+ ↵ ↵

↵ ↵ 1+ ↵ 0 1
1 + ↵ 1+ ↵ ↵ 1 0

· 0 1 ↵ 1 + ↵

0 0 0 0 0
1 0 1 ↵ 1+ ↵

↵ 0 ↵ 1 + ↵ 1
1 + ↵ 0 1 + ↵ 1 ↵

Prime Subring:

+ 0 1
0 0 1
1 1 0

+ 0 1
0 0 0
1 0 1

For Programmer:

GF (4) = {a+ bx|a, b 2 Z2}
(Can use 2 bits to store)

Example 50.
Z2[x]/

⌦
x
3 + x

2 + 1
↵
= R

R = {f +
⌦
x
3 + x

2 + 1
↵
|deg(f) < 3( 2)}

= {a+ bx+ cx
2 +

⌦
x
3 + x

2 + 1
↵
|a, b, c 2 Z2

|R| = 8

R = {0, 1,↵,↵ + 1,↵2
,↵

2 + 1,↵2 + ↵,↵
2 + ↵ + 1}

(make the table here)

It turns out that this is also a field, called GF (8).

Example 51.
Z3[x]/

⌦
x
2 + 1

↵
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is also a field, called GF (9).

If Zp[x]/ hmi is a field, it’s called GF (pdeg(m))
Today

9.6. Basic rule of arithmetic and the human interface to F[x]/ hmi ”.
.

GF (4) = Z2[x]/
⌦
x
2 + x+ 1

↵

↵ = x+
⌦
x
2 + x+ 1

↵

m(↵) = ↵
2 + ↵ + 1

= (x+ hmi)(x+ hmi) + (x+ hmi) + (1 + hmi)
= x

2 + x+ 1 + hmi
m+ hmi
= 0 + hmi

Thus: ↵2+↵+1 = 0,m(↵) = 0. This is fundamental rule of arithmetic
in GF (4).

↵
2 + ↵ + 1 = 0

↵
2 = �↵� 1

= ↵ + 1(2 Z2)

0 1 ↵ 1 + ↵

0
1
↵

↵ + 1

Example 52.
C = R[x]/

⌦
x
2 + 1

↵

↵ = x+ hmi
m(↵) = ↵

2 + 1 = 0

↵
2 = �1

Example 53.
Q[x]/

⌦
x
2 � 2

↵

(Hippasus): There is no element of Q whose square is 2.

↵ = x+ hmi
m(↵) = ↵

2 � 2 = 0

↵
2 = 2
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In general, if we want to ”solve” the equation m(x) = 0, we can
always do this by forming the ring R = F [x]/ hmi. Then ↵ = x+ hmi
is a solution ofm(x) = 0. (Fundamental rule of arithmetic is something
we use to proof there is always a solution with ↵).
Kronecker: ”The equation is its own solution.”
WARNING: The R we just constructed may turn to be a really bad
ring.

Example 54.
R = R[x]/

⌦
x
2 � 1

↵

R = {a↵ + b|a, b 2 R}
(↵� 1)(↵ + 1) = ↵

2 � 1 = 0

But
↵� 1 6= 0

↵� 1 = x� 1 +
⌦
x
2 � 1

↵

0 = 0 +
⌦
x
2 � 1

↵

↵� 1 = 0 () x� 1� 0 2
⌦
x
2 � 1

↵

() x� 1 is a multiple of x2 � 1.

↵ + 1 6= 0

R is not even an integral domain.

NOTE:
R[x]/ hx2 + 1i is a field.

R[x]/ hx2 � 1i is not a domain.
Z/3Z is a field.
Z/4Z is not a domain.

R

Maximal ideals

· · · · · ·

next ideals

· · · · · ·

{0}

· · · · · · · · ·
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9.7. Problems. .

Problem 90. Let R denote the quotient ring Z2[x]/ hx2 + 1i. List the
elements of R, then make a multiplication table. Is R a field?

F [x]/ hmi = {f + hmi |deg(f) < deg(m)}
Z2[x]/

⌦
x
2 + 1

↵
= {f +

⌦
x
2 + 1

↵
|deg(f) < 2  1}

= {a+ bx+
⌦
x
2 + x+ 1

↵
|a, b 2 Z2}

{0 +
⌦
x
2 + 1

↵
, 1 +

⌦
x
2 + 1

↵
, x+

⌦
x
2 + 1

↵
, x+ 1 +

⌦
x
2 + 1

↵
}

0 +
⌦
x
2 + 1

↵
⌘ 0

1 +
⌦
x
2 + 1

↵
⌘ 1

x+
⌦
x
2 + 1

↵
⌘ ↵

1 + x+
⌦
x
2 + 1

↵
= 1 + ↵

Z2[x]/
⌦
x
2 + 1

↵
= {0, 1,↵, 1 + ↵}

· 0 1 ↵ 1 + ↵

0 0 0 0 0
1 0 1 ↵ 1+ ↵

↵ 0 ↵ 1 1 + ↵

1 + ↵ 0 1 + ↵ 1 + ↵ 0

↵
2 = (x+

⌦
x
2 + 1

↵
)(x+

⌦
x
2 + 1

↵
) = x

2 +
⌦
x
2 + 1

↵
= 1 +

⌦
x
2 + 1

↵

x
2
/(x2 + 1), r = 1

Not a field, not all non-zero elements are units.

Problem 91. Let GF (8) denote the quotient ring Z2[x]/ hx3 + x+ 1i.
List the elements of GF (8). Be sure to list each element only once.
(You will probably find it more pleasant to write them in terms of the
standard generator ↵ rather than using coset notation.)

{0, 1,↵, 1 + ↵,↵
2
, 1 + ↵

2
, 1 + ↵ + ↵

2
,↵ + ↵

2}

Problem 92. Working in GF (8), compute the sum (1+↵2)+ (1+↵).

(1 + ↵
2) + (1 + ↵) = 2 + ↵ + ↵

2 = ↵ + ↵
2

Problem 93. Using the ”machine implementation” of multiplication
in GF (8), compute the product (1 + ↵

2)(1 + ↵). Be sure to write your
answer in its standard representation.

(1 + ↵
2)(1 + ↵) = 1 + ↵

2 + ↵ + ↵
3
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↵
3
/(↵3 + ↵ + 1), r = ↵ + 1

1 + ↵
2 + ↵ + ↵

3 = 1 + ↵
2 + ↵ + ↵ + 1 = ↵

2

Problem 94. Working in GF (8), find a formula for ↵3 in terms of
lower powers of ↵. ”(Hint: use the theorem regarding m(↵).)”

m(↵) = ↵
3 + ↵ + 1 = 0

↵
3 = �↵� 1 = ↵ + 1

Problem 95. Use the formula you found above to compute the stan-
dard representations of ↵4

,↵
5
, ↵

6
, and ↵7.

↵
4 = ↵ · ↵3 = ↵

2 + ↵

↵
5 = ↵ · ↵4 = ↵

3 + ↵
2 = 1 + ↵ + ↵

2

↵
6 = ↵ · ↵5 = ↵ + ↵

2 + ↵
3 = ↵ + ↵

2 + ↵ + 1 = ↵
2 + 1

↵
7 = ↵

6 · ↵ = ↵
3 + ↵ = ↵ + 1 + ↵ = 1

Problem 96. Redo your calculation of (1+↵2)(1+↵), this time avoid-
ing the ”machine implementation” in favor of the formula you found
above for ↵3. Verify that you obtain the same answer.

(1 + ↵
2)(1 + ↵) = 1 + ↵

2 + ↵ + ↵
3 = 1 + ↵

2 + ↵ + 1 + ↵ = ↵
2

Problem 97. Suppose m 2 Zp[x] is a polynomial of degree d. Compute
the cardinality of the ring Zp[x]/ hmi. ”(Hint: use the theorem on
unique representation of elements. How many choices are there for
each coe�cient, and how many coe�cients are there?)”

p
d

Problem 98. Verify that the formula you found above correctly predicts
the number of elements of GF (8).

23 = 8
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10. Week10

10.1. Definitions. .
I Maximal ideal: I is maximal if

(1) I 6= R

(2) I ✓ J ✓ J ✓ R) J = I||J = R.

I Divisibility relation (in a domain D; i.e. a|b if and only
if...): let D be an integral domain, a|b if 9c 2 D with b = ac.

IAssociate relation (in a domain D; i.e. a ⇠ b if and only
if...): In D, a ⇠ b i↵ a|b and b|a. (a is an associate of b.)

I Associate class (of an element of a domain D): The equiv-
alence class [a]⇠ is called the associate class of a.

[a]⇠ = {b|a ⇠ b}

10.2. Theorems. .

F Theorem characterizing the ideals I for which R/I is a
field: R/I is a field i↵ I is maximal.

F Containment criterion for principal ideals (i.e. hai ✓ hbi
if and only if...): In D. hbi ✓ hai i↵ a|b.

F Equality criterion for principal ideals (i.e. hai = hbi if and
only if...): a ⇠ b

F Properties of the associate relation (i.e. ⇠ is an...): ⇠ is
an equivalence relation on D:

F Characterization of the associate class [a]⇠: The equivalence
class [a]⇠ is called the associate class of a. [a]⇠ = {ua|u 2 U(D)} (u is
unit)

F List of units in Z: {1,�1}.
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Last time: F [x]/ hmi

↵ = x+ hmi
F [x]/ hmi = {a0, a1↵ + a2↵

2 + · · ·+ adeg(m)�1↵
deg(m)�1|ai 2 F}

m(↵) = 0

But this may turn out to be a bad ring.

This time: when will F [x]/ hmi be a field? More generally, when is
R/I a field?.
Result: I is a maximal ideal.Standing notation:
R is a commutative, unital ring.
I 2 R is an ideal of R.

Definition 38. Maximal Ideal

I is maximal if

(1) I 6= R

(2) I ✓ J ✓ J ✓ R) J = I||J = R.

Theorem 25. R/I is a field i↵ I is maximal.

Proof. First suppose that I is maximal.
R/I is commutative and unital because R is.
R/I is not a zero ring because I 6= R

Suppose a+ I 6= 0 + I, then a� 0 62 I, so a 62 I.
Let

J = {ra+ i|r 2 R, i 2 I}
Claim: J is an ideal.

• 0 2 J because 0 = 0a(2 R) + 0(2 I).
• Suppose j1, j2 2 J , write j1 = r1a + i1, j2 = r2a + i2. j1 + j2 =
(r1 + r2)a+ (i1 + i2) 2 J .

• Suppose j 2 J and s 2 R. Write j = ra+i, sj = (sr)a+si 2 J .
sr 2 R, si 2 I.

Claim 2: I ✓ J . Choose i 2 I. Write i = 0a+ i 2 J .
Claim 3: a 2 J , because a = 1a+ 0.
Thus, J is an ideal with I ✓ J ✓ R, but I 6= J . Maximality impliesJ =
R.
In particular, I 2 J , choose r, i with ra+ i = 1 (particular r, i)
Then, (r + I)(a+ I) = ra+ I = 1 + I (because ra� 1 = �i 2 I)
So a+ I has inverse r + I.
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Conversely, suppose that R/I is a field. Then R/I is not a zero ring.
So I 6= R. Now suppose I ✓ J ✓ R

Case1:
(Hypothesis, I 2 J)

⇤
Friday

F [x]/ hmi
can be implemented on computers.
Useful for:

• mystical approach to equation-solvings. (m(x) = 0)
• Symbolic computation (Same thing as the first one)

But F [x]/ imi may be a bad ring.
Question: when will F [x]/ hmi be a field?
On Monday: R/I is a field () I is a maximal ideal.
Next: Ideal diagram of F [x].

(Need a Graph here)
This must have something to do with factorizations of polynomials.

10.3. Factorization Theory. .
let D be an integral domain.
(Examples: D = Z||D = F [x]).

Definition 39. a|b if 9c 2 D with b = ac.

Theorem 26. In D. hbi ✓ hai i↵ a|b.

Proof. Suppose thT hbi 2 hai , b = 1 · b, so b 2 hbi, sp b 2 hai, so a|b.

OTOH suppose a|b. Then b 2 hai. Thus, hai is an ideal that contains
b. But hbi is the smallest ideal that contains b. Thus hbi ✓ hai . ⇤
Example 55.

h25i 2 h5i
5|25

Example 56. ⌦
x
2 � 1

↵
✓ hx+ 1i
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Example 57. In R[x],

h2x+ 2i ✓ hx+ 1i

Example 58. In R[x],

hx+ 1i ✓ h2x+ 2i

x+ 1 =
1

2
(2x+ 2)

In conclusion: in R[x], x+ 1 = 2x+ 2.

Definition 40. in D, a ⇠ b i↵ a|b and b|a. (a is an associate of b.)

Theorem 27. ⇠ is an equivalence relation on D.

Proof. a ⇠ b i↵ a|b and b|a.
i↵ hbi ✓ hai and hai ✓ hbi
i↵ hbi = hai .
(= is an equivalence relation.) ⇤

The equivalence class [a]⇠ is called the associate class of a.

Example 59. Examples in Z:

[2]⇠ = {2,�2}

[6]⇠ = {6,�6}

[0]⇠� = {0}

Example 60. Examples in R[x]:

[x+ 1]⇠ = {x+ 1, kx+ k}

Theorem 28. The equivalence class [a]⇠ is called the associate class
of a. [a]⇠ = {ua|u 2 U(D)} (u is unit)

Proof. Suppose x 2 {ua|u 2 U(D)}.
Write x = ua for some fixedu 2 U(D).
So a|x. Also, u�1

x = a, so x|a. So x ⇠ a and thus x 2 [a]⇠.
OTOH, suppose x 2 [a]⇠. The n x ⇠ a. Thus x|a and a|x. So a = bx

for some b, and x = ca for some c.
Thena = bca.
Case 1: a 6= 0. Then 1 = bc (cancellation law in integral domain).
Thus, c is a unit with c

�1 = b. Then x = ca, so x 2 {ua|u 2 U(D)}.
Case 2: a = 0. Then x = x(0) = 0.
So x = 1 · a, and again x 2 {ua|u 2 U(D)}. ⇤
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10.4. Problems. .

Problem 99. Suppose u 2 F [x] is a unit. Prove the deg(u) = 0.
”(Hint: start with the equation u · u�1 = 1, and take degrees of both
sides.)”

u · u�1 = 1

deg(u · u�1) = deg(1) = 0

deg(u · u�1)  deg(u) · deg(u�1) = 0

deg(u) = 0, deg(u�1)  0||deg(u�1) = 0, deg(u)  0

if deg(u) = 1, u = 0 , if deg(u�1) = �1, u
�1 = 0, 0 is not a unit.

Therefore, both deg(u), deg(u�1) = 0

Problem 100. Suppose f 2 F [x] has degree zero. Show that f is a
unit. ”(Hint: remember that F is a field. What sort of polynomials
have degree zero?)”

f has degree 0, therefore, f is a non-zero constant polynomial. f is
also an element in F , F is a field, every non-zero element is a unit. f is
a unit in F , its inverse f

�1 2 F is also a non-zero constant polynomial
in F [x]. Therefore, f is a unit in F [x].

Problem 101. Let D be any integral domain. Prove that a 2 D is a
unit if and only if a ⇠ 1.
If a ⇠ 1, a|1, 1 = ac; 1|a, a = 1 · c. a

�1 = c, a = c. a has an inverse
a 2 D , a is a unit.
if a 6⇠ 1, if a - 1, 1 6= ac, a doesn’t have an inverse. If 1 - a, there is no
identity element. It is not unital and therefoir not integral domain.

Problem 102. Suppose u 2 D is a unit and u ⇠ v. Prove that v is
also a unit.

u ⇠ v

u|v, v|u
1|u, u|1

1|u, u|v : u = c1 · 1, v = c2u

v = c2 · c1 · 1 : 1|v
v|u, u|1 : u = c3v, 1 = c4u

1 = c4 · c3v : v|1
1|v&&v|1

v is also a unit.
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Problem 103. An element a 2 D is said to be ”irreducible” if it is
not zero, not a unit, and given any factorization a = bc, either b is a
unit or c is a unit. Describe the irreducible elements of Z.
Let b be a unit 1, and c = 5.

a = bc = 1 · 5 = 5

a is not zero and a doesn’t have an inverse and therefore not a unit.
Any c 6= 1,�1 would satisfy it.
Therefore, irreducible elements of Z are {p|p is a prime}.

Problem 104. Working in F [x] where F is some field, show that any
polynomial of degree one is irreducible. ”(Hint: suppose deg(f) = 1
and f = gh. Taking the degree of both sides of this equation gives
1 = deg(g) + deg(h). What are all the possible values for the ordered
pair (deg(g), deg(h))?)”

f = gh

1 = deg(g) + deg(h)

deg(g) = 1, deg(h) = 0

or
deg(g) = 0, deg(h) = 1

one of g and h must be constant polynomial, and another must be degree
one polynomial. The constant polynomial should also be an element in
F , which has a unit in F , and this unit is also in F [x]. Assume the
degree 1 polynomial has a unit:

gg
�1 = 1, hh�1 = 1, g�1

gh
�1
h = 1 = fg

�1
h
�1

deg(g) + deg(g�1) + deg(h) + deg(h�1) = 0

1 + 0 + deg(g�1) + deg(h�1) = 1

deg(g�1) + deg(h�1) = 0

g
�1
, h

�1 are both constant polynomial. However, (assume h is the one
not constant) deg(hh�1) = deg(h) + deg(h�1 = 1 + 0 = 1, hh�1 6= 1.
Inverse of degree 1 polynomial h doesn’t exist.

Problem 105. Working in F [x], show that a polynomial f of degree
two is irreducible if and only if it has no roots in F . ”(Hint 1: you will
need the Factor Theorem that you proved in ”Assignment 9”. Hint 2:
suppose you have a factorization f = gh in which neither g nor h is a
unit. What are the degrees of g and h?)”

If a polynomial f of degree 2 has a root ↵, then it can be written as
f = (x�↵)h (which is linear and makes f has non-trivial factoriztion),
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x � ↵ is degree 1, h has to be degree 1 to make f degree 2. However,
from question 6, polynomial of degree 1 is not a unit. Therefore, both
g and h in this case are not units, which is against the definition of
irreducible.

If it has no roots, f = gh, g, h cannot be degree 1 polynomials.
Instead, they will be a degree 0 polynomial and a degree 2 polynomial.
Degreen 0 polynomial g has an inverse, it is a unit. Degree 2 polynomial
h has no inverse, because deg(hh�1) = deg(h) + deg(h�1), 0 = 2 +
deg(h�1), but degree cannot be �2 to satisfy the equation. Therefore,
h (degree 2) is not a unit.

0, 2

2, 0

Problem 106. Working in F [x], show that a polynomial f of degree
three is irreducible if and only if it has no roots in F . ”(Hint: this is
very similar to the previous exercise.)”
Same as the previous question, if f has a root, then it can be written
as a degree 1 polynomial and a degree 2 polynomial, both have no units.
If it has not, it can be written as degree 0 and degree 3.

Problem 107. Give an example of a field F and a polynomial f 2 F [x]
of degree four, which has no roots but is nevertheless reducible. ”(Hint:
this is much easier than it looks. The most familiar examples are those
with F = R. You simply need to find a pair of degree-two polynomials
with no roots, and multiply them.)”

In R[x], x4 + 5x2 + 6 is reducible but has no roots:

x
4 + 5x2 + 6 = (x2 + 2)(x2 + 3)

Problem 108. Does the example you produced in the last problem in-
validate the reasoning you used in the previous two? If not, at exactly
what point does the reasoning you used in the previous two exercises
break down in the case of degree-four polynomials?

The combination of degrees can be 2, 2, can these two degree 2 polyno-
mial can have no non-trivial factorization, which means that no linear
term, no root. However, degree 2 and degree 2 make this degree 4 poly-
nomial have non-trivial factorization.

Problem 109. Working once more in a general integral domain D,
prove that if a is irreducible and a ⇠ b, then b is also irreducible.
Suppose b = xy, b = ua, ua = xy, a = u

�1
xy, a is irreducible, so either
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y is a unit or (u�1
x) is a unit.

u
�1
x = v

(v is a unit)

x = uv
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11. Week11

11.1. Irreducible. .
In R[x]:

x
2 � x� 6 = (x� 3)(x+ 2) = 1 · (x2 � x� 6)

Definition 41. Trivial Factorization
In an integral domain D:
The factorization a = bc is said to be trivial is one of b, c is a unit.
Note: Every element has many trivial factorizartion: for any unit u,
we can write

a = u(u�1
a)

Definition 42. a 2 D is said to be irreducible if it is

(1) not zero
(2) not a unit
(3) has no non-trivial factorization

Example 61. in Z, 7 is irreducible, but 6 is not irreducible, because
6 = 2 · 3.

In R[x], x� 4 is irreducible.

x� 4 = fg

1 = deg(f) + deg(g)

They have to be 1 and 0. All degree 1 polynomials have to be irre-
ducible.

Suppose f 2 F [x] with deg(f) = 2. Claim: f is irreducible () f

has no roots in F .
Suppose f has a root, a 2 F , i.e. f(a) = 0. Then (x � a)|f , say
f = (x� a)q.

a = 1 + deg(q)) deg(q) = 1

f = (x� a)q

non-trivial factorization. So, f is reducible.
F Conversely, if f is reducible, then (suppose non trivial) f = gh

with deg(g) = deg(h) = 2 = deg(g) + deg(h) (deg(g) = deg(h) =
1, deg(g) + deg(h) = 2).

0, 2

2, 0

1, 1
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So g is linear if it has non-trivial factorization, and every linear has a
root: ax+ b has �ba�1 as a root.
(any factorization with a deg = 1 factor has a root).

Example 62. In R[x], x2 + 1 is irreducible.

Note: The same idea is valid for cubic polynomaials: deg(f) = 3,
then f is irreducible () f has no roots.
This will be false for higher degrees.

Example 63. In R[x], x4 + 5x2 + 6 is reducible but has no roots:

x
4 + 5x2 + 6 = (x2 + 2)(x2 + 3)

Theorem 29. In F [x], the ideal hmi is maximal if and only if m is
irreducible.

Proof. First suppose m is irreducible. Suppose further that hmi ✓ J ✓
F [x]. But J is a principle ideal, say J = hfi.

hmi ✓ hfi ✓ h1i
Thus 1|f and f |m.Thus m = fg for some g. This must be a trivial
factorization. i.e. either f or g must be a unit.
Case 1: if f is a unit, then hfi contains a unit, it must be an improper
ideal. hfi = F [x].
Case 2: Suppose g is a unit. Then m is a unit multiple of f , so m ⇠ f .
Associate class generate same ideals. hmi = hfi. hmi is maximal.

OTOH, Suppose m is reducible, then either

(1) m = 0, or
(2) m is a unit, or
(3) m has a non-trivial factorization.

Case 1: h0i is not maximal because

(1) h0i ( hxi ( F [x].
(2) If m is a unit then hmi = F [x] is bot maximal.
(3) m = fg with neither f or g a unit, f |m but f 6⇠ m. hmi (
hfi ( F [x].
So hmi is not maximal.

⇤
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11.2. prime ideal. .
R/I is a field () I is maximal.
F [x]/ hmi is a field
() hmi is maximal,
() m is irreducible.

Example 64. Z/ hni is a field
() hni is maximal
() n is irreducible.
(Same proof as in polynomial case.)

R/I is an integral domain () I is a prime ideal.

Definition 43. Let R be a commutative, unital ring, I an ideal of R.
I is a prime ideal if

(1) I 6= R, and
(2) ab 2 I ) either a 2 I or b 2 I.

Example 65. Non-examples in Z:
(1) h1i is not prime because h1i = Z
(2) h6i is not prime: 2 · 3 2 h6i, but 2 62 h6i and 3 62 h6i

Example 66. Examples from Z: h0i is prime:
h0i = {0} 6= Z
ab 2 {0}) ab = 0) either a = 0 or b = 0.

R is an integral domain () {0} is a prime ideal.
In Z:
h3i is prime:
h3i 6= Z, also if ab 2 h3i, then 3|ab so 3|a and 3|b.
Example 67. Non-example in R[x].
hx2 � 1i is not prime:

(x+ 1)(x+ 1) 2
⌦
x
2 � 1

↵

but
x� 1 62

⌦
x
2 � 1

↵

x+ 1 62
⌦
x
2 � 1

↵

Theorem 30. R/I is an integral domain () I is prime.

Proof. Suppose I is prime. R/I is commutative and unital because R

is,
R/I is not a zero ring because R 6= I.
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Finally, we verify the zero-product property:
Suppose

(a+ I)(b+ I) = 0 + I

ab+ I = 0 + I

ab� 0 2 I

ab 2 I

either a 2 I or b 2 I,
a� 0 2 I

a+ I = 0 + I

Same thing for b.
R/ h0i w R domain iff h0i is prime.
In F [x], h0i is prime because F [x] is an integral domian.

⇤
Theorem 31. Every maximal ideal is prime.

Proof. Suppose I is maximal, thenR/I is a field, thenR/I is an integral
domain, then I is prime. ⇤

Warning: Not every prime ideal is maximal.

Example 68. in Z or in F [x], h0i is prime.
h0i ( h2i ( Z
h0i ( hxi ( F [x]

Example 69. in R[x, y],
h0i ( hxi ( hx, yi ( R[x, y]
( means contained in, not equal. ( 6✓ means not contained in).

Note: Su[pposem 2 F [x] is not zero, not a unit, but has a non-trivial
factorization m� fg. Then hmi is not prime.

fg 2 hmi
but

f 62 hmi (deg(f) < deg(m))

g 62 hmi
Structure of F [x]/ hmi:

• If m is a unit, F [x]/ hmi = {0}
• If m = 0, tehn F [x]/ hmi w F [x] is an integral domain.
• If m is irreducible, F [x]/ hmi is a field.
• If m can be factored, F [x]/ hmi has zero divisor.

Example 70. R[x]/ hx2 = 1i is a field. x2+1 is degree 2 with no roots,
so it is irreducible.
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Example 71. R[x]/ hx2 � 1i has zero divisor.

Example 72. R[x]/ h3i = {0}
R[x]/ h0i w R[x] (isomorphic)

Example 73. Z2[x]/ hx2 + x+ 1i is a field.
x x

2 + x+ 1
0 1
1 1

No roots. Irreducible.

Example 74. Z2[x]/ hx2 + 1i has zero-divisor
x x

2 + 1
0 1
1 0

It has root and non-trivial factoriztion:

x
2 + 1 = (x+ 1)(x+ 1)
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12. Week12

12.1. Definitions: I

I Trivial Factorization: n an integral domain D:
The factorization a = bc is said to be trivial is one of b, c is a unit.
Note: Every element has many trivial factorizartion: for any unit u,
we can write

a = u(u�1
a)

I Irreducible: a 2 D is said to be irreducible if it is

(1) not zero
(2) not a unit
(3) has no non-trivial factorization

Example: in Z, 7 is irreducible, but 6 is not irreducible, because 6 = 2·3.

I Prime ideal: Let R be a commutative, unital ring, I an ideal of
R. I is a prime ideal if

(1) I 6= R, and
(2) ab 2 I ) either a 2 I or b 2 I.

Example: Examples from Z: h0i is prime:
h0i = {0} 6= Z
ab 2 {0}) ab = 0) either a = 0 or b = 0.
Non-examples in Z:

(1) h1i is not prime because h1i = Z
(2) h6i is not prime: 2 · 3 2 h6i, but 2 62 h6i and 3 62 h6i

I Unique factorization domain: The integral domain D is said
to have unique factorization if

(1) If a 2 D is not zero, not a unit, then there is some factorization
a = p1p2 · · · pk, p1, · · · , pk are all irreducible.

(2) If we have two such factorizations,

a = p1 · · · pj = q1 · · · ql
then k = l and, after reordering the q

0
s, if necessary, pi ⇠ qi8i.

x
3 � x = x(x� 1)(x+ 1) = (2x� 2)(

1

2
x)(x+ 1) = (

1

2
x)(2x� 2)(x+ 1)

x ⇠ 1

2
x, · · ·

I Principal ideal domain: A domain D is a principle ideal do-
main (PID) if every ideal of D is principle.
(Principle ideals: Let R be any unital ring, and let a 2 R. Define
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Ra = {ra|r 2 R}.)
Example: Z is a PID.
Any ideal I of Z is also an additive subgroup of Z, hence cyclic, so
equal to nZ for some n � 0. But nZ = hni.

I Prime element: In an integral domain D, the element a 2 D is
prime if

(1) a 6= 0
(2) a is not a unit
(3) a|bc) a|b or a|c

Example: Non-example:
In Z, 4 is not a prime:

4|12
4|2 · 5

but
4 - 2, 4 - 6

But 5 is prime in Z.

I Proper divisor chain: A proper divisor chain is a sequence of
elements

a1, a2, a3 · · ·
with

a2|a1, a3|a2, a4|a3, · · ·
(i.e., ai+1|ai8i)
and ai+1 6⇠ ai.
Example:

75, 15, 5, 1

I Divisor chain condition: D satisfies the divisor chain condition
if it has no infinite proper divisor chains. (D is an integral domain)
Example: In R[x]:

x
3 � x, x� 1, 1
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12.2. Theorems: F

F Theorem relating prime ideals to integral domains: R/I

is an integral domain () I is prime.

F Theorem relating irreducible elements to maximal ideals
(”If D is a principal ideal domain, then hmi is maximal if and
only if m is...”): If D is a PID, then hmi is maximal i↵ m is irre-
ducible.

(Addition theorems in class:)
(In F [x], the ideal hmi is maximal if and only if m is irreducible. )
(Every maximal ideal is prime.)

F Theorem relating prime elements to irreducible elements
in general: In any integral domain, primeness implies irreducibility.

F Theorem relating prime elements to irreducible elements
in principal ideal domains: If D is a PID and a 2 D is irreducible,
then a is prime. (Hence, in PID’s, then concept of primeness and irre-
ducibility are equivalent).

F Criteria for D to have unique factorization: Suppose that
D satisfies the divisor chain condition and in addition every irreducible
element of D is prime. Then D has unique factorization.

F Classification of ideals in Z (”Z is a...”): Z has unique fac-
torization.

F Theorem concerning divisor chains in Z (”Z has no...”): Z
satisfies the divisor chain condition and has no infinite proper divisor
chains.

FTheorem concerning unique factorization in Z: Z has unique
factorization.

F Classification of ideals in F[x] (”For any field F , F [x] is
a...”): ” If F is a field, then every ideal of F [x] is principle
For any field F , F [x] is a PID.

F [x]/ hmi
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will be

• field if m is ireeductible
• w F [x] if m = 0
• {0} if m is a unit
• not an integral domain otherwise

F Theorem concerning divisor chains in F[x] (”For any field
F , F [x] has no...”): F [x] satisfies the divisor chain condition and has
no infinite proper divisor chains.

F Theorem concerning unique factorization in F[x]: F [x] has
unique factorization.

F List of units of F [x]: elements with degree 0

F Theorem relating maximal ideals to irreducible elements
(in PIDs): the ideal hmi is maximal i↵ m is irreducible. ?

F Criterion for F [x]/ hmi to be a field: F [x]/ hmi is a field if m
is irreducible.
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Last Week:

F [x]/ hmi
will be

• field if m is ireeductible
• w F [x] if m = 0
• {0} if m is a unit
• not an integral domain otherwise

12.3. Unique Factorization.

12 = 2 · 6, 6 = 2 · 3

12 = 3 · 4, 4 = 2 · 2

12 = 2 · 2 · 3

12 = 3 · 3 · 2

12 = (�3) · (�4), (�4) = 2 · (�2)

12 = (�3) · 2 · (�2)
In R[x]

x
3 � x = x · (x2 � 1), x2 � 1 = (x� 1)(x+ 1)

x
3 � x = (

1

2
x)(2x� 2)(x+ 1)

Definition 44. The integral domain D is said to have unique factor-
ization if

(1) If a 2 D is not zero, not a unit, then there is some factorization
a = p1p2 · · · pk, p1, · · · , pk are all irreducible.

(2) If we have two such factorizations,

a = p1 · · · pj = q1 · · · ql
then k = l and, after reordering the q

0
s, if necessary, pi ⇠ qi8i.

x
3 � x = x(x� 1)(x+ 1) = (2x� 2)(

1

2
x)(x+ 1) = (

1

2
x)(2x� 2)(x+ 1)

x ⇠ 1

2
x, · · ·

Theorem 32. Foundamental Theorem of Arithmetic

Z has unique factorization.

Goal: Prove this within a few days.
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Example 75. An Integral Domain That does not have Unique Factor-
ization: Z[

p
�5]

Z[
p
�5] = {a+ bi

p
5|a, b 2 Z}

3� 4i
p
5 2 Z[

p
�5]

Exercise: Z[
p
�5] is a subring of C. So Z[

p
�5] is an integral domain.

What are the units?
Suppose a+ bi

p
5 is a unit, with inverse c+ di

p
5.

(a+ bi

p
5)(c+ di

p
5) = 1 + 0i

p
5

(ac� 5bd) + (ad+ bc)i
p
5 = 1 + 0i

p
5

ac� 5bd = 1, ad+ bc = 0

Definition 45. Define N : Z[
p
�5]! Z by N(a+ bi

p
5) = a

2 +5b2 =
|a+ bi

p
5|2

N(z1z2) = N(z1)N(z2)

N(a+ bi

p
5)N(c+ di

p
5) = 1

So N(a+ bi
p
5) = ±1.

a
2 + 5b2 = ±1

) b = 0

U(Z[
p
�5]) = {1,�1}

6 = (1 + i

p
5)(1� i

p
5)

On the homework, show 2 is irreducible, 3 is irreducible, 1+ i
p
5, 1�

i
p
5 is irreducible.

Question: Does F [x] have unique factorization?
Answer: Yes, but it will take a while to. prove.

12.4. Prime Elements.

Definition 46. In an integral domain D, the element a 2 D is prime
if

(1) a 6= 0
(2) a is not a unit
(3) a|bc) a|b or a|c
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Example 76. Non-example:
In Z, 4 is not a prime:

4|12
4|2 · 6

but
4 - 2, 4 - 6

But 5 is prime in Z.
Example 77. Non-example:

In Z[
p
�5], 2 is not a prime:

2|(1 + i

p
5)(1� i

p
5)

but
2 - i
p
5, 2 - i

p
5

Note: In Z[
p
�5], 2 is irreducible but not prime.

Monday: Prime elements: p 2 D is a prime if

(1) p 6= 0
(2) p 62 U(D)
(3) p|ab) p|a or p|b

This is not equivalent in general to irreducibility (Z[
p
�5])

2|(1 + i

p
5)(1� i

p
5)

but
2 - (1 + i

p
5), 2 - (1� i

p
5)

Today(Wednesday):

12.5. Actual relationship between Primeness and Irreducible.

Theorem 33. In any integral domain, primeness implies irreducibility.

Proof. Suppose p is prime. We need only show that every factorization
of p is trivial.

Suppose we have a factorization

p = ab

Then p|ab so either p|a or p|b.
Case1: p|a then also a|p. So p ⇠ a. Then p = ua for some unit u.
So ab = ua. Also a 6= 0 (because p 6= 0). (In the integral Domain,
cancellation law, we can cancel a). Then b = u, so b is a unit.
Case 2 is similar.

⇤
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12.6. Principle Ideal Domains.

Definition 47. A domain D is a principle ideal domain (PID) if every
ideal of D is principle.

(Principle ideals: Let R be any unital ring, and let a 2 R. Define
Ra = {ra|r 2 R})

Example 78. Z is a PID.

Proof. Any ideal I of Z is also an additive subgroup of Z, hence cyclic,
so equal to nZ for some n � 0. But nZ = hni.

⇤
Example 79. If F is any field, then F [x] is a PID.

Example 80. Non-examples are hard to construct. We will see one in
a few minutes.

Theorem 34. If D is a PID and a 2 D is irreducible, then a is
prime. (Hence, in PID’s, then concept of primeness and irreducibility
are equivalent).

integral domians
Z[
p
�5]

prime ) irreducible

PIDs

prime () irreducible
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Proof. Suppose a is irreducible.
Claim: hai must be maximal:
hai 6= D because a is not a unit.
Suppose hai ✓ J ✓ D, write J = hji
hai ✓ hji, so j|a. Write a = jk.
Since a is irreducible, this factorization is trivial:
Case 1: j is a unit, then J = hji = D.
Case 2: k is a unit. Then a = jk so a ⇠ j.
Then hai = hji
So, hai is maximal. But every maximal, ideal is a prime ideal. Thus,
hai is a prime ideal.

Suppose a|bc. Then bc 2 hai.
Case 1: b 2 hai. Then a|b
Case 2: c 2 hai. Then a|c

(By hypothesis, a is irreducible, and units are not irreducible, a

cannot be a unit. ⇤
12.7. Divisor Chain Condition.

Definition 48. A proper divisor chain is a sequence of elements

a1, a2, a3 · · ·
with

a2|a1, a3|a2, a4|a3, · · ·
(i.e., ai+1|ai8i)
and ai+1 6⇠ ai.

Example 81. Example from Z

75, 15, 5, 1

(can’t extend)
�12, 6,�2,�1

(blocked now)

Example 82. in R[x]:
x
3 � x, x� 1, 1

Definition 49. D satisfies the divisor chain condition if it has no
infinite proper divisor chains. (Like examples above)
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Previous Point:

Z[
p
�5]

6

2 3

6

1 +
p
�5 1�

p
�5

Last time: Prime elements divisor chain condition.

• There are no infinite proper divisor chains.
( for some integral domains but not others).

70, 35, 7, 1

Theorem 35. Suppose D is an integral domain and satisfies the di-
visor chain condition. Then, any non-zero, non-unit element has an
irreducible factor.

Proof. Suppose a 2 D is non-zero, not a unit.
If a has no non-trivial factorization, then a is an irreducible factor of
a (because a is irreducible if a 6= 0, a 6= unit, a has no non-trivial
factorization.).
Otherwise, unit a = a1b1, with neither factors a unit.

Then, If a is irreducible, then a1 is irreducible factor of a.
Otherwise, a1 = a2b2 with neither factor a unit.

Continuing in this, either we find an irreducible factor OR we get a
divisor chain a, a1, a2, a3, · · · , which is an infinite divisor chain.
Infinite divisor chain ! prohibited by hypothesis.

a

a1

a2

a3 b3

b2

b1

(Keep going until get an irreducible factor).

⇤
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Theorem 36. If D satisfies divisor chain condition, then every non-
zero, non-unit a 2 D has a factorization a = i1, i2, · · · ik into irreducible
elements.

Proof. If a is irreducible, take i1 = a, otherwise, let i1 be an irreducible
factor.
Write a = i1a1 (here i1 is irreducible). If a1 is irreducible, then put
i2 = a1. Otherwise a1 = i2a2 for i2 irreducible.
If this goes on forever, then a, a1, a2, a3, · · · is an infinite proper divisor
chain, and this does not happen.
When the process stops, we have produced the desired factorization.

a

i1 a1

i2 a2

· · ·

⇤

Theorem 37. Z satisfies the divisor chain.

Proof. Define N(i) = |i| (N(i) means the norm of integer i, |i| is the
absolute value of i).
This is always a non-negative integer, and if b|a with b 6⇠ a, then
N(b) < N(a). This cannot go on forever.

⇤

Theorem 38. F [x] satisfies the divisor chain condition.
Proof is the same as for Z, just take N(f) = deg(f).

Example 83. x
2 + 1

2x2 + 2 1
2

(This becomes a trivial factorization because 1
2 is a unit, it is already

irreducible),
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x
2 � 1

x+ 1 x� 1

(Degree is always getting smaller, it will become irreducible or get to
degree of 1, which is always irreducible)

Theorem 39. Z[
p
�5] does satisfy the divisor chain condition.

Proof. (Sketch of the proof)
N(a+ bi

p
5) = a

2 + 5b2 (complex absolute value squared)
⇤

Theorem 40. Suppose that D satisfies the divisor chain condition and
in addition every irreducible element of D is prime. Then D has unique
factorization.

Proof. Suppose we have a non-zero, non-unit a 2 D with two factor-
izations into primes

a = p1p2 · · · pk
= a1a2 · · · al

(pi, ai are irreducible (prime))
(each p is associated to each a).
p1|a, so p1|(a1a2 · · · al)
p1 is prime and it divides (a1)(a2a3 · · · al), sp wither p1|a1 or p1|(a2 · · · al)
continuing, we find that p1 is a divisor of ai for some i (it divides that
product, so it will divide one of the factors)
Renumbering them as it is necessary, we can assume that p1|a1.
But, a1 is irreducible. And p1 is not a unit.
So, p1 ⇠ a1.
Write a1 = u1p1 (an associate is always a unit multiple)

p1p2 · · · pk = a1a2 · · · al
p1p2 · · · pk = u1p1a2 · · · al

now have a common factor that 6= 0, and working on an integral do-
main, so can cancel p1.

p2 · · · pk = u1a2 · · · al
p2 cannot divide u1 because if it did, p2 would be an associate of u1(p2 ⇠
u1)! and that would mean p2 would be a unit.
so, p2 - u1.
Now, as before, p2 ⇠ a2 (maybe after some renumbering of as).
Continue in this way, one of three things must happenL
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(1) If k < l, then eventually we cancel everything on left-hand side
and get 1 = u1u2 · · · ukak+1 · · · al.

If this happens then al is a unit, because there is something
1 can multiply it by to get 1. This is a contradiction so case 1
doesn’t happen.

(2) If k > l, we get pl+1pl+2 · · · pk = u1 · · · ul, which implies pk is a
unit which is also a contradiction. Case 2 doesn’t happen.

(3) k = l and theorem is proved.

⇤
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12.8. Problems.

Problem 110. The polynomial f = x
3 + x has an essentially unique

factorization into primes of R[x]. Find this factorization.

x
3 + x = x(x2 + 1)

Problem 111. The polynomial f = x
3 + x has an essentially unique

factorization into primes of C[x]. Find this factorization.

x
3 + x = x(x2 + 1) = x(x+ i)(x� i)

Problem 112. ”’(The domain Z[
p
�5])”’ Recall that Z[

p
�5] = {a+

b
p
5i | a, b 2 Z}. Show that this set is a unital subring of C, and hence

an integral domain.

(a+ b

p
5i)(c+ d

p
5i) = 1

ac� 5bd = 1, ad+ bc = 0

d =
�bc
a

ac+
5b2c

a
= 1

c = 1/
a
2 + 5b2

a
=

a

a2 + 5b2

d =
�b

a2 + 5b2

When c, d are integers, a+ b
p
5i has inverse. And when a

2 + 5b2 = 1,
they are integers.
Therefore, for element a + b

p
5i, there can be an inverse c + d

p
5i.

Therefore, it is a unital subring of C.

Problem 113. Define a function N : Z[
p
�5] ! Z�0 by the formula

N(z) = |z|2. (Here the absolute value is taken in the sense of complex
numbers, i.e. |a+ bi| =

p
a2 + b2.) Show that N preserves multiplica-

tion, i.e. that N(z1z2) = N(z1)N(z2).

N(a+ b

p
5i) = a

2 + 5b2

N(c+ d

p
5i) = c

2 + 5d2

N((a+b

p
5i)(c+d

p
5i)) = N((ac�5bd)+

p
5(ad+bc)i) = (ac�5bd)2+5(ad+bc)2

= a
2
c
2 + 5a2d2 + 5b2c2 + 25b2d2

N(a+b

p
5i)N(c+d

p
5i) = (a2+5b2)(c2+5d2) = a

2
c
2+5a2d2+5b2c2+25b2d2

N((a+ b

p
5i)(c+ d

p
5i)) == N(a+ b

p
5i)N(c+ d

p
5i)
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Problem 114. Find all elements a + bi
p
5 2 Z[

p
�5] with N(a +

bi
p
5) = 1.

a
2 + 5b2 = 1

a, b 2 Z

a = ±1, b = 0; b = ±1, a = 0

Problem 115. Show that an element of Z[
p
�5] is a unit if and only

if it has norm one.

If the norm is not one, a2 + 5b2 > 1. c+ d
p
5i is inverse only when

c, d are integers.

c = 1/
a
2 + 5b2

a
=

a

a2 + 5b2

d =
�b

a2 + 5b2

if a2 + 5b2 > 1, a > 1, b > 1 or a � 1 ^ b � 1.
If a > 1, |a| < |a2| < |a2 + 5b2|, c cannot be an integer. If b > 1,
|� b| < |5b2| < |a2 + 5b2|, d cannot be an integer.
if a > 1, b > 1, |a| < |a2+5b2|^ |� b| < |a2+2b2|, both c and d cannot
be an integer.

Problem 116. Show that in the ring Z[
p
�5], the factorization a = bc

is non-trivial if and only if N(b) < N(a) and N(c) < N(a).

if N(b) = N(a), N(c) = 1, which means that c is a unit. Then
a = bc is a trivial factorization. N(b) > a cannot happen.

Problem 117. Show that Z[
p
�5] has no elements of norm 2. ”(Hint:

N(a+ bi
p
5) = a

2 + 5b2, and both a and b are integers.)”

If it has norm 2:

a
2 + 5b2 = 2

Then
a
2 5b2

2 0
0 2
1 1

In any cases, a or b cannot be integer.
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Problem 118. Show that Z[
p
�5] has no elements of norm 3.

a
2

a 5b2 b
3
p
3 0 0

0 0 3
p
3

2
p
2 1 1

1 1 2
p
2

Problem 119. Calculate the norms of the elements 2, 3, 1 + i
p
5, and

1� i
p
5.

4, 9, 6, 6

Problem 120. Show that all four of the elements referenced in the
previous problem are irreducible in Z[

p
�5].

4 = 2 ⇤ 2, 9 = 3 ⇤ 3, 6 = 2 ⇤ 3
No elements of norm 2 or 3, they only have trivial factorization.

Problem 121. Show that none of the elements referenced above is
prime.

They are not zero, not unit (only with norm 1 has unit)
However,

2|6
6 = (1 +

p
5i)(1�

p
5i)

2 - (1 +
p
5i), 2 - (1�

p
5i)

(2 only has trivial factorization)
Same thing for 3 and 1 + i

p
5 (6 = 2 · 3)

Problem 122. Show that Z[
p
�5] does ”not” have unique factoriza-

tion.

Not every irreducible elements are prime.

Problem 123. Show that Z[
p
�5] ”does” satisfy the divisor chain con-

dition. ”(Hint: think about norms in a proper divisor chain.)”

Looking at the norm, a = bc, N(b) < N(a), N(c) < N(a). continue
factorizing the next one. The norm is getting smaller and the process
cannot go on forever.
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Problem 124. Show that Z[
p
�5] must contain at least one non-

principal ideal.

An ideal I is a left and right ideal (if i 2 I and r 2 R then also
ri 2 I). A principle ideal is Ra = {ra|r 2 R}.

If it contains no non-principle ideal, then all I can be written as
Ra = {ra|r 2 R}, which means that every element in I can be written
as ra (has non-trivial factorization).

If we have an ideal containing both 2 and 3,then I = h2, 3i = {2a +
2b
p
5i|a, b 2 Z} [ {3a+ 3b

p
5i|a, b 2 Z}

We are unable to write all elements as ra, because we cannot choose
a correct a.

Both 2 and 3 are irreducible and have only trivial factorization. For
any elements in {2a + 2b

p
5i|a, b 2 Z}, we can only choose a = 2,

however, we cannot write any elements in {3a + 3b
p
5i|a, b 2 Z} as

r · 2.

Problem 125. Consider the ideal J =
⌦
2, 1 + i

p
5
↵
= {2(a+ bi

p
5) +

(1 + i
p
5)(c + di

p
5) | a, b, c, d 2 Z} = {(2a + c � 5d) + (2b + c +

d)i
p
5 | a, b, c, d 2 Z}. Show that 2 2 J and 1 + i

p
5 2 J but 1 62 J .

”(Hint: to show that 1 62 J , work with the last-given description of the
elements of J . In order for the coe�cient of i

p
5 to vanish, c and d

must both be even or both odd. In either case, what is the parity of
2a+ c� 5d?)”

a = 1, b = c = d = 0, 2(a+ bi

p
5) + (1 + i

p
5)(c+ di

p
5) = 2

c = 1, a = b = d = 0, 2(a+ bi

p
5) + (1 + i

p
5)(c+ di

p
5) = 1 + i

p
5

If 1 2 J , then 1 = (2a+ c� 5d) + (2b+ c+ d)i
p
5

2a+ c� 5d = 1

2b+ c+ d = 0

c = 1 + 5d� 2a

2b+ c+ d = 2b+ 1 + 5d� 2a+ d = 2b+ 6d� 2a+ 1

= 2(b+ 3d� a) + 1

It has to be an odd number, impossible to be 0. 1 62 J .
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Problem 126. Show that the ideal J is ”not” principal. ”(Hint: if it
were principal, say J = hgi, then the generator g would need to be a
common divisor of 2 and 1 + i

p
5. But these are irreducibles and are

not associates of one another. So what are their common divisors?)”

Both 2 and 1+i
p
5 are irreducible and have only trivial factorization.

We can write them as 2 = ab, 1 + i
p
5 = ac i↵

2 ⇠ 1 + i

p
5

However

u(1 + i

p
5) = ±(1 +

p
5) 6= 2, 8u 2 U(Z[

p
�5} = {1,�1}

Problem 127. ”’(Optional; a domain with an infinite divisor chain)”’
This and all following exercises require some knowledge of complex
analysis and are thus optional. In these exercises, if you choose to
attempt them, you will construct an example of an infinite proper di-
visor chain. To begin with, let R denote the set of functions from C
to C which are complex-analytic at every point. Using the properties
of complex derivatives, show that R is a unital ring under pointwise
addition and multiplication.

Condition for the function to be complex-analytic:

@f

@z̄
= 0,

@u

@x
=
@v

@y
,
@u

@y
= �@v

@x

First of all, it is a ring. For any complex number on f(x, y) = u(x, y)+
iv(x, y), it’s an abelian group under addition and associative under mul-
tiplication (all complex numbers).

Because it is complex-analytic everywhere, it is holomorphic there
is no poles on the function. It has an multiplicative identity 1C = 1,
1 · f(x, y) = f(x, y).

To find the inverse, there are some x = x1, y = y1:

f(x1, y1)f(x2, y2) = 1

(u(x1, y1) + iv(x1, y1))(u(x2, y2) + iv(x2, y2)) = 1

(u(x1, y1) + iv(x1, y1))
1

u(x1, y1) + iv(x1, y1)
= 1

1

u(x1, y1) + iv(x1, y1)
=

u(x1, y1)� iv(x1, y1)

(u(x1, y1) + iv(x1, y1))(u(x1, y1)� iv(x1, y1))
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=
u(x1, y1)� iv(x1, y1)

u(x1, y1)2 + v(x1, y1)2

=
u(x1, y1)

||f(x1, y1)||
� v(x1, y1)

||f(x1, y1)||
i

There are some x2, y2 such that u(x2, y2) =
u(x1,y1)

||f(x1,y1)|| , v(x2, y2) = � v(x1,y1)
||f(x1,y1)|| ,

because the function is holomorphic.

Problem 128. Show that a non-constant element of R can vanish at
only countably many points. ”(Hint: this is the hardest exercise of the
whole series. You will need to use the identity theorem together with
the fact that C is a second-countable topological space.)”

Problem 129. Show that R is an integral domain. ”(Hint: if fg = 0
then either f or g must vanish at uncountably many points.)”
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Problem 130. Show that a unit of R cannot have any zeros. ”(Hint:
if f has a zero of order d at z = z0, then 1/f has a pole of order d at
z = z0.)”

Problem 131. Define a function fn : C ! C by the formula f(z) =
sin(z)/

Q
n

k=1 (z � ki⇡). Show that fn has only removable singularities
and thus has a unique extension to an element of R (which we shall
also denote by fn).

Problem 132. Describe the zeros of fn.
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Problem 133. Show that fn/fn+1 has only removable singularities,
and thus fn+1 | fn.

Problem 134. Show that fn+1 6⇠ fn. ”(Hint: use the principle, which
you proved above, that a unit of R cannot have any zeros.)”

Problem 135. Conclude that (f1, f2, f3, . . . ) is an infinite proper di-
visor chain in R.
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13. Week13

.

13.1. Procedures. .

I Sieve of Eratosthenes (for integers):

I Sieve of Eratosthenes (for polynomials with coe�cients in a finite
field):

I Procedure to factor polynomials over C:
• rout-finding is enough - if f is not constant. Then it has a root.
(”Fundamental theorem of algebra”0

• Newton’s method can find roots. F
• Every irreducible has degree 1.

I Procedure to factor polynomials over R:
• If a is a real root then x� a is a factor.
• Otherwise if a, ā form a conjugate pair of roots, then

((x� a)(x� ā))|f
((x� a)(x� ā)) = x

2 � (a+ ā)x+ aā 2 R[x]
• Every irreducible has degree 1 or 2.
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Last time: If D satisfies divisor chain condition and in which every
irreducible element is prime, then D has unique factorization.

13.2. Techniques of factorization. Problem: given f 2 F [x], find
”the” prime factorization f = p1 · · · pk (pi is prime).

Remark 1: There can bo no completely general technique, because
answers are field-dependent.

Example 84. Factor x
2 + 1 over R.

x
2 + 1 is irreducible: degree is  3 and it has no roots.

Example 85. Factor x
2 + 1 over C.

f(x0 = x
2 + 1

f(i) = i
2 + 1 = 0

so x� i must be a factor. x
2 + 1

x� i x+ i

(As long as there is a root, we can get linear factor.

• Some general techniques
• Some field-specific techniques

13.2.1. General techniques.

(1) If we can find one proper divisor of f, say g1|f , then we can find
another by long division:
divide f by g, and set g2 = q.

(2) Factor Theorem: If we can find a root a 2 F (i.e. f(a) = 0),
then x� a is a factor.

Example 86. GF (4) = {0, 1,↵, 1 + ↵}.
↵
2 + ↵ + 1 = 0
↵
2 = ↵� 1 = 1 + ↵

Problem: Factor
x
2 + x+ 1

over GF (4).
We know that ↵ is a root, so x� ↵ is a factor.

x
2 + x+ 1

x+ ↵ x+ (1 + ↵)

GF (4) = ({a+ bx|a, b 2 Z2[x])
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Example 87.
x
4 + 1

over R.
No real roots - no linear factors.
Claim: x

2 �
p
2x+ 1 is a factor.

x
4 + 1

x
2 �
p
2x+ 1 x

2 +
p
2x+ 1

13.2.2. Field-specific techniquws. Over C, factorization is ”easy”.
Every non-constant f 2 C[x] has a root in C.(proof requires analy-
sis).(”Fundamental theorem of algebra”)
Warning: This theorem is false for Q[i]�{r+ si|r, s,2 Q}. This shows
that root-finding is enough:

(1) Find a root a of f .
(2) Factor f = (x� a)q.
(3) Repeat on q.

Example 88. Factor x
4 + 1 over C.

x
4 = �1

4arg(x) = 180 + 360k(degrees)

arg(x) = 45 + 90k

z =

p
2

2
+ i

p
2

2
x
4 = (x� z)(x� iz)(x+ z)(x+ iz)

Roots can be found using Newton’s method.
Over R: to factor f 2 R[x]
(1) Find a complex root a 2 C,
(2) The cinjugate ā will also be a root.
(3) This, x� a and x� ā are both linear factors in C[x]

(x� a)(x� ā) = x
2 � (a+ ā)x+ aā

(real and real for a+ ā and aā)

(Before Wednesday class) In a commutative ring R, ha1, a2, · · · , aki
= {r1a1 + r2a2 + · · ·+ rkak|r1, · · · , rk 2 R}.
in Z[x], h↵, xi = {↵f1 + xf2|f1, f2 2 Z[x]}.

Monday class:
Fact: F [x] has unique factorization.

• if f(a) = 0, then (x� a)|f , long division gives f = (x� a)q.
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• in general, if g1|f then we get a factorization f = g1g2 by long
division.

• over C:

– rout-finding is enough - if f is not constant. Then it has a
root. (”Fundamental theorem of algebra”0

– Newton’s method can find roots. F
– Every irreducible has degree 1.

• over R:
– If a is a real root then x� a is a factor.
– Otherwise if a, ā form a conjugate pair of roots, then

((x� a)(x� ā))|f

((x� a)(x� ā)) = x
2 � (a+ ā)x+ aā 2 R[x]

– Every irreducible has degree 1 or 2.

Example 89. Factor x
3 � 1 over R

x
3 � 1

x� 1 x
2 + x+ 1

x� �1+i
p
3

2 x� �1�i
p
3

2

Over Q, factorizationis much harder than C or R.
• Q[x] has irreducibles i nevery degree:
If p is prime and n is arbitrary, xn � p is irreducible over Q.
Proof uses Eisenstein’s criterion.

Example 90. irreducible

8
><

>:

x
2 � 2

x
3 � 2

x
4 � 2

• But factorization in Q[x] is a solved problem.
• Slow algorithm - Kronecker’s Method. (c. 1900)
Overwhelms computers in moderate degree.

• Fast algorithm - LLL algorithm (c. 1975)

(All above (Factorization over Q works over algebraic number field)
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13.3. Finite Fields. .
Such as

Zp, GF (4), GF (8), etc

(can still be used for information storage - see coding theory and espe-
cially linear codes. Like Ascii.)

• Slow algorithm - study in class
• Fast algorithm (need to study by myself!!!) Google ”Factor-
ization over finite fields”

First problem is to recognize irreducible polynomials. We will use
the Siere of Eratosthenes

13.3.1. Siere of Eratosthenes. in Z:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 · · · 20

in Z2[x]:
1, x, x+ 1, x2

, x
2 + 1, x2 + x, x

2 + x+ 1

x
3
, x

3 + 1, x3 + x, x
3+x+1, x3 + x

2
, x

3+x
2+1, x3 + x

2 + x, x
3 + x

2 + x+ 1

(Using division algorithm to see if something is divisible by x, and the
next black, and the next black)
(See if something is a root)
For general polynomial:
If f is a general polynomial of degree d, we just test it for divisibility
by all irreducibles of degree < d

Example 91. x
3 + x

2 + x+ 1

x+ 1 x
2 + 1

x+ 1 x+ 1

Then repeat the procedure. If it is

divisible by some irreducible items.
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On Wednesday:
Factorization in F [x].
Q (algebraic number fields)
R
C
(comes down to root-finding.
Finite fields -Sieve of Eratosthenes.
Also much faster methods: Nierreiter: Finite Fields and their applica-
tion.

Today:
Did Hippasus really need to die?

Definition 50. A field extension is a triple (F,E,◆) where F and E are
fields, and ◆ : F ! E is a monomorphism.
F is called the base field, E is called the extension field, and ◆ is the
injection.

◆

E

F ◆[F ]

◆(F ) is a copy of F , and E is an extension fron ◆(F ).

Example 92. Q! R
Take F = Q, E = R.
Z! (init)R (1! 1.00000 · · · )
Z! (car, inj)Q
Q! (◆)R

◆(
a

b
= (a.000000 · · · )/(b.00000 · · · )
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Z R

Q

init.

car.inj ◆

Example 93. R! C.
F = R
E = C

◆(a) = a+ 0i

(Real is the real axis in complex plane).

◆

C
R ◆[R]

Example 94. Z2 ! GF (4)

F = Z2

E = GF (4) = {0, 1,↵, 1 + ↵}(↵2 = 1 + ↵

Example 95. Q! Q[
p
2]

F = Q
E = Q[

p
2] = Q[x]/

⌦
x
2 � 2

↵



140 JINGWEN FENG

Remark: x
2 � 2 is irreducible because its degree is  3 and it has no

roots in Q.
Q[x]/ hx2 � 2i is a field.

◆(a) = a+ 0↵

(↵ = x+
⌦
x
2 � 2

↵
)

Usually people name x (or ↵? I forgot) as
p
2.

(
p
2 = x+

⌦
x
2 � 2

↵
)

p
2
2
� 2 = 0

(
p
2)2 = 2

It is a reasonable name.
”Symbolic Computation”.

Theorem 41. Kronecker’s Theorem

Suppose F is a field, and F 2 F [x] is a non-constant polynomial with
coe�cient in F . Then there exists a field extension (F,E, ◆) and an
element ↵ 2 E with f(↵) = 0.

F = Q, x
2 � 2 = 0

Proof. Since f is not constant, it is not a unit of F [x] (if a unit, degree
will be � 0, field has no zero-divisors), and f 6= 0, write

f = f1f2 · · · fk
(fi 2 F [x] is irreducible)
put

E = F [x]/ hf1i
This is a field.
Put

↵ = x+ hf1i
Then f1(↵) = 0 (this is a theorem).
So

f(↵) = f1(↵)f2(↵) · · · fk(↵) = 0

a 2 F, ◆(a) = a+ 0↵ + 0↵2 + · · ·+ 0↵def(f1)�1

Exercise: ◆ : F ! E is a monomorphism. ⇤
Example 96. F = Q, f = x

2 � 2
f = (x2 � 2) (irreducible)

E = Q[x]/
⌦
x
2 � 2

↵
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Example 97. F = Q, f = x
4 � 5x2 + 6.

f = (x2 � 3)(x2 � 2)

E = Q[x]/
⌦
x
2 � 3

↵
= Q[

p
3] = {r + s

p
3|r, s 2 Q}

f(
p
3) = (

p
3)4 � 5(

p
3)2 + 6

= 0

(No uniqueness, we can also use a di↵erent extension field with another
factor.)

Example 98. F = Q, f = x
3 + x

f = x
3 + x = x(x2 + 1)

E = Q[x]/ hxi = {a|a 2 Q} ' Q
(Already factored)

↵ = x+ hxi = 0 + hxi
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13.4. Problems. .

Problem 136. Skim the introduction to https://en.wikipedia.org/wiki/Factorization of polynomials
the Wikipedia article on polynomial factorization so you will know
where to find search terms when you one day need to know how to
factor high-degree polynomials.

Problem 137. Working over Z2, factor the polynomial x3 + 1 into
irreducibles. ”(Hint: first look for roots and pull out the corresponding
linear factors by long division.)”.

x
3 + 1

13 + 1 = 2 = 0

f(1) = 0

(x� 1) = (x+1) is a factor. Also, x+1 has degree 1, it is irreducible.

x
3 + 1 = (x+ 1)(x2 + x+ 1)

(x2 + x+ 1) has no root in Z2, therefore, x2 + x+ 1 is irreducible.

Problem 138. Repeat the previous exercise for x
4 + 1 and for x

5 + 1.
”(Hint: the hardest part will be deciding whether x

4 + x
3 + x

2 + x + 1
can be factored as the product of two quadratics. But for this, you can
make a list of all irreducible quadratics and test for divisibility by each
in turn.)”.

x
4 + 1 = (x+ 1)(x+ 1)(x2 + x+ 1)

x
5 + 1 = (x+ 1)(x4 + x

3 + x
2 + x+ 1)

Some irreducible element:

1, x, x+ 1, x2 + x+ 1, x3 + x+ 1, x3 + x
2 + 1, x4 + x+ 1

(x4 + x
3 + x

2 + x+ 1) is irreducible.

Problem 139. Working over Z3, find all irreducible polynomials of
degree two. ”(Hint: you do not need the Sieve; you just need to find
quadratics that have no roots.)”.

02 = 0, 12 = 1, 22 = 1

x
2 + 1, 2x2 + 2, 2x2 + x+ 1, 2x2 + 2x+ 1, 2x2 + 2x+ 2

Problem 140. Construct a field with nine elements.

{ax+ b|a, b 2 Z3}
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14. Week14

.

14.1. Definitions. .

ISplitting field (of a non-constant polynomial f 2 F [x]): Suppose
f 2 F [x] is non-constant, and F ! E is a field extension. We say that
f splits over E if f can be written as a product of linear factors in
E[x].
We say F ! E is a splitting field for f if

(1) The polynomial f splits over E, and
(2) The extension F ! E is generated by roots of f , i.e. the

smallest subfield of E containing (the image of) F and all of
the roots of f is E itself.

Example:
f = x

2�4 splits over Q, since f = (x�2)(x+2). By contrast, g = x
2�5

does not split over Q.

I Isomorphism (of field extensions): Suppose (F,E1, ◆1) and (F,E2, ◆2)
are extensions of the same base field. We say that these extension
are isomorphic if there exists a field isomorphism � : E1 ! E2 with
� � ◆1 = ◆2.
Example:
F = Q, E1 = Q[x]/ hx2 � 2i with ◆(↵) = (↵+0x+0x2+ · · · )+ hx2 � 2i
(Send the rational number ↵ to the coset of the constant polynomial
with value ↵).
E2 = {r + s

p
2|r, s 2 Q} (

p
2 denotes the positive real number whose

square is 2, E2 is a subset over R.) E2 is a subfield of R (To prove
every element is a unit, write 1

r+s
p
2
in the form of r

r2�2s2 +
�s

r2�2s2

p
2).

Define ◆2 : Q! E2 by ◆2(r) = r + 0
p
2.

(Q, E1, ◆1) and (Q, E2, ◆2) isomorphic field extensions.
Define a map  : Q[x] ! R by the formula  (a0 + a1x + a2x

2 +
a3x

3 · · · ) = (a0 + 2a2 + 22a4 + · · · ) + (a1 + 2a3 + 22a5 + · · · )
p
2. We

can see im( ) = E2.  is a unital ring homomorphism.
ker( ) is an ideal of Q[x] that contains x

2 � 2 (because  (x2 � 2) =
2 · 1� 2 = 0, and ri 2 I ) r(x2 � 2) = 0)
Applying Fundamental Theorem on Homomorphism, we can get a ho-
momorphism  ̂ : E1 ! R whose image is E2, restricting the codomain
gives an isomorphism from E1 to E2.
 ̂(◆1(r)) =  ̂((r + 0x + · · · ) + hx2 � 2i) = r + 0

p
2 = ◆2(r).  ̂ is an
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isomorphism of field extensions.

I NSF(f): Suppose f 2 F [x] is not constant. The non-split part of
f over F , denoted NSF (f), is the product of the non-linear irreducible
factors of f in F [x]. (If there are no such factors, then by convension
we take the empty product to be 1).
Example: For NSQ(x5�3x3+x). x5�3x3+x = x(x�2)(x+2)(x2+1).
NSQ(x5 � 3x3 + x) = x

2 + 1.
IAutomorphism (of a field extension): Let (F,E, ◆) be a field exten-

sion. An automorphism of (F,E, ◆) is an isomorphism from (F,E, ◆) to
itself, i.e. a unital ring isomorphism � : E ! E satisfying � � ◆ = ◆.
Example:
Define ◆ : R ! C by the function ◆(a) = a + 0i (it is true that ◆
is a unital ring monomorphism, so that (F,E◆) is a legitimate field
extension. Define � : C ! C by the formula �(a + bi) = a � bi.
�(◆(a)) = �(a + 0i) = a � 0i = ◆(a). So indeed � � ◆ = ◆ and � is
a legitimate automorphism of the extension (R,C, ◆). (� is the reflec-
tion over real axis in the complex plane, ◆ is the real axis. Reflection
real over real axis (when complex part is 0) would not change anything.

IGal(F,E, ◆) (the ”Galois group” of the extension (F,E, ◆)): the
group of automorphisms of the field extension (F,E, ◆) is called its Ga-
lois Group, and is denoted Gal(F,E, ◆) (or Gak(F ! E) or GalF (E)).
Example: Gal(R,C, ◆) = {e, �} is a two-element group and is isomor-
phic to Z2.
(e: identity map C! C, conjugation map � : C! C)
 (i) = i (fix real numbers).  (a+bi) =  (a)+ (b) (i) = a+bi,  = e

 (i) = �i, then  (a + bi) = a � bi,  = �. (Then prove with Sudoku
game table).

I �(H) (the ”fixed field” of the subgroup H  Gal(F,E, ◆)): Put
G = Gal(F ! E), and suppose H is a subgroup of G. The fixed field
of H is the set of all points of E that are left fixed by every element
of H. In symbols: �(H) = {e = E|8h 2 H, h(e) = e} (the set �(H) is
eventually a subset of E, H is a subgroup of G, and �(H) is a subfield
of E that contains the image of F , i.e. it is a so-called subextension of
(F,E, ◆))
Edxample: G = {e, �}. This has two subgroups {e}, {e, �} (� � � = e).
�({e}) = C (every complex numbers are fixed by e).
�({e, �}) = R (a+ bi = a� bi i↵ b = 0, so only real numbers are fixed
by �)
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I The Galois Correspondence: � itself (from previous definition)
from the set of subgroups of Gal(F,E, ◆) to the set of subextensions of
(F,E, ◆). This function is called Galois Correspondence.

14.2. Theorems. .

F Theorem on existence and uniqueness of splitting fields: Suppose
F is a field and f 2 F [x] is a non-constant polynomial with coe�cient
in F . Then f has a splitting field. Moreover, splitting field are unique
up to isomorphism of field extensions.
Example: f = x

4 � 5x2 + 6 over Q.
E1 = Q[x]/ hx2 � 2i and we denote satndard generator x+ hx2 � 2i by
↵. Factor f over E1, f = (x� ↵)(x+ ↵)(x2 � 3), E1 is not a splitting
field.
E = E1[x]/ hx2 � 3i and denoted standard generator x + hx2 � 3i by
�. f = (x� ↵)(x+ ↵)(x� �)(x+ �), f splits over E.
E = {b0 + b1�|b0, b1 2 E1}, E1 = {a0 + a1↵|a0, a1 2 Q}, then E =
{(a+ b↵)+(c+d↵)�|a, b, c, d 2 Q} = {a+ b↵+ c�+d↵�|a, b, c, d 2 Q}

F Fundamental Theorem of Galois Theory : Galois Correspondence
is bijective.
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14.3. Problems.

Problem 141. Using the Sieve of Eratosthenes (or any other suitable
method, such as root-searching), show that the polynomial x3+x+1 is
irreducible over Z2.

Problem 142. Show that the quotient ring Z2[x]/ hx3 + x+ 1i is a
field. (It is usually denoted GF (8).)
Z2 is a field, x3 + x+ 1 is irreducible, therefore, the quotient ring is a
field.

Problem 143. How many elements does GF (8) have?
Answer: 8

Problem 144. List the elements of GF (8) explicitly.

Similar to GF (4) .

F [x]/ hmi = {f + hmi |def(f) < deg(m)}
Z2[x]/

⌦
x
3 + x+ 1

↵
= {f +

⌦
x
3 + x+ 1

↵
|def(f) < 3  2}

= {a+ bx+ cx
2 +

⌦
x
3 + x+ 1

↵
|a, b, c 2 Z2}

f can be
0, 1, x, 1 + x, x

2
, x

2 + 1, x2 + x, x
2 + x+ 1

then we can make
0 +

⌦
x
3 + x+ 1

↵
= 0

1 +
⌦
x
3 + x+ 1

↵
= 1

x+
⌦
x
3 + x+ 1

↵
= ↵

1 + x+
⌦
x
3 + x+ 1

↵
= 1 + ↵

x
2 = x

2 +
⌦
x
3 + x+ 1

↵
= (x+

⌦
x
3 + x+ 1

↵
)(x+

⌦
x
3 + x+ 1

↵
) = ↵

2

x
2 + 1 +

⌦
x
3 + x+ 1

↵
= ↵

2 + 1

x
2 + x+

⌦
x
3 + x+ 1

↵
= ↵

2 + ↵

x
2 + x+ 1 +

⌦
x
3 + x+ 1

↵
= ↵

2 + ↵ + 1

When we do multiplication in the table, if we get something like ↵2 ·↵ =
↵
3, then we do ↵3 = x

3 + hx3 + x+ 1i = x + 1 + hx3 + x+ 1i because
(x3)/(x3 + x+ 1), r = x+ 1

Problem 145. Define a function � : GF (8)! GF (8) by the formula
�(x) = x

2. Show that � is a unital ring homomorphism. ”(Hint: to
prove that it preserves addition, use the Freshman’s Dream.)” �(x1 +
x2) = (x1+x2)2 = x

2
1+2x1x2+x

2
2 = x

2
1+x

2
2 = �(x1)+�(x2) �(x1x2) =

(x1x2)2 = x
2
1x

2
2 = �(x1)�(x2) �(1) = 12 = 1
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Problem 146. Compute ker(�).
ker(�) = 0 (field has no zero divisor)

Problem 147. Show that � is bijective, and hence an isomorphism
from GF (8) to itself. (It is usually called the ”Frobenius automor-
phism”.)
Diagram or field rules.

Problem 148. Make a table of values for �. ”(This is not as tedious
as it appears at first. Remember the Freshman’s Dream!)”

Problem 149. Now define ◆ : Z2 ! GF (8) by the usual formula
◆(a) = a + 0↵ + 0↵2, so that (Z2, GF (8), ◆) is a field extension. Show
that � is an automorphism of this extension.
� is a unital ring homomorphism and also it is bijective, therefore, it
is a unital ring isomorphism. Then � � ◆ = ◆. It is an sutomorphism.

Problem 150. It is possible to show that � generates the whole of
Gal(Z2, GF (8), ◆). Taking this for granted, make a group table for this
Galois group.
Do all the x

2

Problem 151. Find all subgroups of Gal(Z2, GF (8), ◆). ”(Hint: there
are very few. Use Lagrange’s Theorem!)”

Problem 152. Compute the Galois Correspondence for (Z2, GF (8), ◆).

Problem 153. (Optional challenge) Repeat the above exercises for
GF (16). (That is, first use the Sieve to identify an irreducible quartic
in Z2[x], then use this quartic to construct a field with sixteen elements,
then make tables for the Frobenius automorphism and its powers, and
finally compute the Galois Correspondence. This is no more concep-
tually challenging than for GF (8), but it is somewhat more tedious.
However, (Z2, GF (16), ◆) is the smallest field extension for which the
Galois group has a non-trivial proper subgroup, so it may be of special
interest. Though tedious, this example reveals a number of interesting
phenomena.)


